Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Nature ; 617(7961): 488-492, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100906

RESUMO

The newly discovered kagome superconductors represent a promising platform for investigating the interplay between band topology, electronic order and lattice geometry1-9. Despite extensive research efforts on this system, the nature of the superconducting ground state remains elusive10-17. In particular, consensus on the electron pairing symmetry has not been achieved so far18-20, in part owing to the lack of a momentum-resolved measurement of the superconducting gap structure. Here we report the direct observation of a nodeless, nearly isotropic and orbital-independent superconducting gap in the momentum space of two exemplary CsV3Sb5-derived kagome superconductors-Cs(V0.93Nb0.07)3Sb5 and Cs(V0.86Ta0.14)3Sb5-using ultrahigh-resolution and low-temperature angle-resolved photoemission spectroscopy. Remarkably, such a gap structure is robust to the appearance or absence of charge order in the normal state, tuned by isovalent Nb/Ta substitutions of V. Our comprehensive characterizations of the superconducting gap provide indispensable information on the electron pairing symmetry of kagome superconductors, and advance our understanding of the superconductivity and intertwined electronic orders in quantum materials.

2.
Nano Lett ; 23(16): 7675-7682, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37578323

RESUMO

The interplay of spin-orbit coupling and crystal symmetry can generate spin-polarized bands in materials only a few atomic layers thick, potentially leading to unprecedented physical properties. In the case of bilayer materials with global inversion symmetry, locally broken inversion symmetry can generate degenerate spin-polarized bands, in which the spins in each layer are oppositely polarized. Here, we demonstrate that the hidden spins in a Tl bilayer crystal are revealed by growing it on Ag(111) of sizable lattice mismatch, together with the appearance of a remarkable phenomenon unique to centrosymmetric hidden-spin bilayer crystals: a novel band splitting in both spin and space. The key to success in observing this novel splitting is that the interaction at the interface has just the right strength: it does not destroy the original wave functions of the Tl bilayer but is strong enough to induce an energy separation.

3.
Phys Rev Lett ; 130(4): 046402, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763428

RESUMO

The interplay of nontrivial topology and superconductivity in condensed matter physics gives rise to exotic phenomena. However, materials are extremely rare where it is possible to explore the full details of the superconducting pairing. Here, we investigate the momentum dependence of the superconducting gap distribution in a novel Dirac material PdTe. Using high resolution, low temperature photoemission spectroscopy, we establish it as a spin-orbit coupled Dirac semimetal with the topological Fermi arc crossing the Fermi level on the (010) surface. This spin-textured surface state exhibits a fully gapped superconducting Cooper pairing structure below T_{c}∼4.5 K. Moreover, we find a node in the bulk near the Brillouin zone boundary, away from the topological Fermi arc. These observations not only demonstrate the band resolved electronic correlation between topological Fermi arc states and the way it induces Cooper pairing in PdTe, but also provide a rare case where surface and bulk states host a coexistence of nodeless and nodal gap structures enforced by spin-orbit coupling.

4.
Nano Lett ; 22(22): 8827-8834, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367457

RESUMO

The quantum spin Hall (QSH) effect has attracted extensive research interest because of the potential applications in spintronics and quantum computing, which is attributable to two conducting edge channels with opposite spin polarization and the quantized electronic conductance of 2e2/h. Recently, 2M-WS2, a new stable phase of transition metal dichalcogenides with a 2M structure showing a layer configuration identical to that of the monolayer 1T' TMDs, was suggested to be a QSH insulator as well as a superconductor with a critical transition temperature of around 8 K. Here, high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES are applied to investigate the electronic and spin structure of the topological surface states (TSS) in the superconducting 2M-WS2. The TSS exhibit characteristic spin-momentum-locking behavior, suggesting the existence of long-sought nontrivial Z2 topological states therein. We expect that 2M-WS2 with coexisting superconductivity and TSS might host the promising Majorana bound states.

5.
Nat Mater ; 20(8): 1093-1099, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34017119

RESUMO

Control of the phase transition from topological to normal insulators can allow for an on/off switching of spin current. While topological phase transitions have been realized by elemental substitution in semiconducting alloys, such an approach requires preparation of materials with various compositions. Thus it is quite far from a feasible device application, which demands a reversible operation. Here we use angle-resolved photoemission spectroscopy and spin- and angle-resolved photoemission spectroscopy to visualize the strain-driven band-structure evolution of the quasi-one-dimensional superconductor TaSe3. We demonstrate that it undergoes reversible strain-induced topological phase transitions from a strong topological insulator phase with spin-polarized, quasi-one-dimensional topological surface states, to topologically trivial semimetal and band insulating phases. The quasi-one-dimensional superconductor TaSe3 provides a suitable platform for engineering the topological spintronics, for example as an on/off switch for a spin current that is robust against impurity scattering.

6.
Nat Mater ; 20(4): 473-479, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33398124

RESUMO

Low-dimensional van der Waals materials have been extensively studied as a platform with which to generate quantum effects. Advancing this research, topological quantum materials with van der Waals structures are currently receiving a great deal of attention. Here, we use the concept of designing topological materials by the van der Waals stacking of quantum spin Hall insulators. Most interestingly, we find that a slight shift of inversion centre in the unit cell caused by a modification of stacking induces a transition from a trivial insulator to a higher-order topological insulator. Based on this, we present angle-resolved photoemission spectroscopy results showing that the real three-dimensional material Bi4Br4 is a higher-order topological insulator. Our demonstration that various topological states can be selected by stacking chains differently, combined with the advantages of van der Waals materials, offers a playground for engineering topologically non-trivial edge states towards future spintronics applications.

7.
J Synchrotron Radiat ; 28(Pt 5): 1631-1638, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475310

RESUMO

An endstation dedicated to angle-resolved photoemission spectroscopy (ARPES) using a soft X-ray microbeam has been developed at the beamline BL25SU of SPring-8. To obtain a high photoemission intensity, this endstation is optimized for measurements under the condition of grazing beam incidence to a sample surface, where the glancing angle is 5° or smaller. A Wolter mirror is used for focusing the soft X-rays. Even at the glancing angle of 5°, the smallest beam spot still having a sufficient photon flux for ARPES is almost round on the sample surface and the FWHM diameter is ∼5 µm. There is no need to change the sample orientation for performing kx - ky mapping by virtue of the electron lens with a deflector of the photoelectron analyzer, which makes it possible to keep the irradiation area unchanged. A partially cleaved surface area as small as ∼20 µm was made on an Si(111) wafer and ARPES measurements were performed. The results are presented.

8.
Phys Rev Lett ; 125(17): 176401, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33156655

RESUMO

The electrons in 2D systems with broken inversion symmetry are spin-polarized due to spin-orbit coupling and provide perfect targets for observing exotic spin-related fundamental phenomena. We observe a Fermi surface with a novel spin texture in the 2D metallic system formed by indium double layers on Si(111) and find that the primary origin of the spin-polarized electronic states of this system is the orbital angular momentum and not the so-called Rashba effect. The present results deepen the understanding of the physics arising from spin-orbit coupling in atomic-layered materials with consequences for spintronic devices and the physics of the superconducting state.

9.
Phys Rev Lett ; 124(23): 236402, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32603150

RESUMO

Interfacing bulk conducting topological Bi_{2}Se_{3} films with s-wave superconductors initiates strong superconducting order in the nontrivial surface states. However, bulk insulating topological (Bi_{1-x}Sb_{x})_{2}Te_{3} films on bulk Nb instead exhibit a giant attenuation of surface superconductivity, even for films only two layers thick. This massive suppression of proximity pairing is evidenced by ultrahigh-resolution band mappings and by contrasting quantified superconducting gaps with those of heavily n-doped topological Bi_{2}Se_{3}/Nb. The results underscore the limitations of using superconducting proximity effects to realize topological superconductivity in nearly intrinsic systems.

10.
Phys Rev Lett ; 122(12): 126403, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978076

RESUMO

The symmetry of a surface or interface plays an important role in determining the spin splitting and texture of a two-dimensional band. Spin-polarized bands of a triangular lattice atomic layer (TLAL) consisting of Sn on a SiC(0001) substrate is investigated by spin- and angle-resolved photoelectron spectroscopy. Surprisingly, both Zeeman- and Rashba-type spin-split bands, without and with spin degeneracy, respectively, coexist at a K point of the Sn TLAL. The K point has a threefold symmetry without inversion symmetry according to the crystal structure including the SiC periodicity, meaning that the Zeeman-type is consistent with the symmetry of the lattice while the Rashba-type is inconsistent. Our density functional calculations reveal that the charge density distribution of the Rashba-type (Zeeman-type) band shows (no) inversion symmetry at the K point. Therefore, the symmetry of the charge density distribution agrees with both types of the spin splitting.

11.
Phys Rev Lett ; 121(25): 257201, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608774

RESUMO

Using high-resolution spin-resolved photoemission spectroscopy, we observe a thermal spin depolarization to which all spin-polarized electrons contribute. Furthermore, we observe a distinct minority spin state near the Fermi level and a corresponding depolarization that seldom contributes to demagnetization. The origin of this depolarization has been identified as the many-body effect characteristic of half-metallic ferromagnets. Our investigation opens an experimental field of itinerant ferromagnetic physics focusing on phenomena with sub-meV energy scale.

13.
Phys Rev Lett ; 118(16): 167002, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28474948

RESUMO

We investigate the superconducting-gap anisotropy in one of the recently discovered BiS_{2}-based superconductors, NdO_{0.71}F_{0.29}BiS_{2} (T_{c}∼5 K), using laser-based angle-resolved photoemission spectroscopy. Whereas the previously discovered high-T_{c} superconductors such as copper oxides and iron-based superconductors, which are believed to have unconventional superconducting mechanisms, have 3d electrons in their conduction bands, the conduction band of BiS_{2}-based superconductors mainly consists of Bi 6p electrons, and, hence, the conventional superconducting mechanism might be expected. Contrary to this expectation, we observe a strongly anisotropic superconducting gap. This result strongly suggests that the pairing mechanism for NdO_{0.71}F_{0.29}BiS_{2} is an unconventional one and we attribute the observed anisotropy to competitive or cooperative multiple paring interactions.

14.
Phys Rev Lett ; 119(21): 217001, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29219391

RESUMO

Using a laser-excited angle-resolved photoemission spectroscopy capable of bulk sensitive and high-energy resolution measurements, we reveal a new phenomenon of superconductors in the optimally doped trilayer Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{10+δ}. We observe a hybridization of the Bogoliubov bands derived from the inner and outer CuO_{2} planes with different magnitudes of energy gaps. Our data clearly exhibit the splitting of coherent peaks and the consequent enhancement of spectral gaps. These features are reproduced by model calculations, which indicate that the gap enhancement extends over a wide range of Fermi surface up to the antinode. The significant modulation of electron pairing uncovered here might be a crucial factor to achieve the highest critical temperature in the trilayer cuprates.

15.
Phys Chem Chem Phys ; 19(28): 18646-18651, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28692082

RESUMO

The modification of the Au(111) Shockley surface state (SS) by an n-alkane molecule (n-tetratetracontane) monolayer was observed by angle-resolved ultraviolet photoemission spectroscopy. Although there is little chance of chemical interaction in this ideal physisorption system, the volume of the Fermi surface of the SS was significantly reduced accompanied by the formation of large interface electric dipoles. Moreover, Rashba splitting of the SS by spin-orbit interactions was slightly increased upon n-tetratetracontane adsorption, which arose from the decrease in the symmetry of the wave function around the Au nuclei at the surface. The detailed information about the simple physisorption system presented in this paper provides basic knowledge for understanding the electronic structure at the interface between other organic molecules and metal substrates.

16.
Phys Rev Lett ; 116(9): 096801, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26991191

RESUMO

A Weyl semimetal is a new state of matter that hosts Weyl fermions as quasiparticle excitations. The Weyl fermions at zero energy correspond to points of bulk-band degeneracy, called Weyl nodes, which are separated in momentum space and are connected only through the crystal's boundary by an exotic Fermi arc surface state. We experimentally measure the spin polarization of the Fermi arcs in the first experimentally discovered Weyl semimetal TaAs. Our spin data, for the first time, reveal that the Fermi arcs' spin-polarization magnitude is as large as 80% and lies completely in the plane of the surface. Moreover, we demonstrate that the chirality of the Weyl nodes in TaAs cannot be inferred by the spin texture of the Fermi arcs. The observed nondegenerate property of the Fermi arcs is important for establishing its exact topological nature, which reveals that spins on the arc form a novel type of 2D matter. Additionally, the nearly full spin polarization we observed (∼80%) may be useful in spintronic applications.

17.
Phys Rev Lett ; 115(11): 116801, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26406846

RESUMO

The interaction between light and novel two-dimensional electronic states holds promise to realize new fundamental physics and optical devices. Here, we use pump-probe photoemission spectroscopy to study the optically excited Dirac surface states in the bulk-insulating topological insulator Bi_{2}Te_{2}Se and reveal optical properties that are in sharp contrast to those of bulk-metallic topological insulators. We observe a gigantic optical lifetime exceeding 4 µs (1 µs=10^{-6} s) for the surface states in Bi_{2}Te_{2}Se, whereas the lifetime in most topological insulators, such as Bi_{2}Se_{3}, has been limited to a few picoseconds (1 ps=10^{-12} s). Moreover, we discover a surface photovoltage, a shift of the chemical potential of the Dirac surface states, as large as 100 mV. Our results demonstrate a rare platform to study charge excitation and relaxation in energy and momentum space in a two-dimensional system.

18.
J Synchrotron Radiat ; 21(Pt 1): 183-92, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24365935

RESUMO

In order to utilize high-brilliance photon sources, such as X-ray free-electron lasers (XFELs), for advanced time-resolved photoelectron spectroscopy (TR-PES), a single-shot CCD-based data acquisition system combined with a high-resolution hemispherical electron energy analyzer has been developed. The system's design enables it to be controlled by an external trigger signal for single-shot pump-probe-type TR-PES. The basic performance of the system is demonstrated with an offline test, followed by online core-level photoelectron and Auger electron spectroscopy in 'single-shot image', 'shot-to-shot image (image-to-image storage or block storage)' and `shot-to-shot sweep' modes at soft X-ray undulator beamline BL17SU of SPring-8. In the offline test the typical repetition rate for image-to-image storage mode has been confirmed to be about 15 Hz using a conventional pulse-generator. The function for correcting the shot-to-shot intensity fluctuations of the exciting photon beam, an important requirement for the TR-PES experiments at FEL sources, has been successfully tested at BL17SU by measuring Au 4f photoelectrons with intentionally controlled photon flux. The system has also been applied to hard X-ray PES (HAXPES) in `ordinary sweep' mode as well as shot-to-shot image mode at the 27 m-long undulator beamline BL19LXU of SPring-8 and also at the SACLA XFEL facility. The XFEL-induced Ti 1s core-level spectrum of La-doped SrTiO3 is reported as a function of incident power density. The Ti 1s core-level spectrum obtained at low power density is consistent with the spectrum obtained using the synchrotron source. At high power densities the Ti 1s core-level spectra show space-charge effects which are analysed using a known mean-field model for ultrafast electron packet propagation. The results successfully confirm the capability of the present data acquisition system for carrying out the core-level HAXPES studies of condensed matter induced by the XFEL.

19.
J Synchrotron Radiat ; 21(Pt 2): 352-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24562556

RESUMO

A new soft X-ray beamline, BL07LSU, has been constructed at SPring-8 to perform advanced soft X-ray spectroscopy for materials science. The beamline is designed to achieve high energy resolution (E/ΔE> 10000) and high photon flux [>10(12) photons s(-1) (0.01% bandwidth)(-1)] in the photon energy range 250-2000 eV with controllable polarization. To realise this state-of-the-art performance, a novel segmented cross undulator was developed and adopted as a light source. The details of the undulator light source and beamline monochromator design are described. The achieved performance of the beamline, such as the photon flux, energy resolution and the state of polarization, is reported.

20.
Phys Rev Lett ; 112(13): 136802, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24745448

RESUMO

Electron scattering in the topological surface state (TSS) of the topological insulator Bi1.5Sb0.5Te1.7Se1.3 was studied using quasiparticle interference observed by scanning tunneling microscopy. It was found that not only the 180° backscattering but also a wide range of backscattering angles of 100°-180° are effectively prohibited in the TSS. This conclusion was obtained by comparing the observed scattering vectors with the diameters of the constant-energy contours of the TSS, which were measured for both occupied and unoccupied states using time- and angle-resolved photoemission spectroscopy. The robust protection from backscattering in the TSS is good news for applications, but it poses a challenge to the theoretical understanding of the transport in the TSS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA