Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 131(2): 168-183, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35642564

RESUMO

BACKGROUND: Insulin resistance (IR) can increase atherosclerotic and cardiovascular risk by inducing endothelial dysfunction, decreasing nitric oxide (NO) production, and accelerating arterial inflammation. The aim is to determine the mechanism by which insulin action and NO production in endothelial cells can improve systemic bioenergetics and decrease atherosclerosis via differentiation of perivascular progenitor cells (PPCs) into brown adipocytes (BAT). METHODS: Studies used various endothelial transgenic and deletion mutant ApoE-/- mice of insulin receptors, eNOS (endothelial NO synthase) and ETBR (endothelin receptor type B) receptors for assessments of atherosclerosis. Cells were isolated from perivascular fat and micro-vessels for studies on differentiation and signaling mechanisms in responses to NO, insulin, and lipokines from BAT. RESULTS: Enhancing insulin's actions on endothelial cells and NO production in ECIRS1 transgenic mice reduced body weight and increased systemic energy expenditure and BAT mass and activity by inducing differentiation of PPCs into beige/BAT even with high-fat diet. However, positive changes in bioenergetics, BAT differentiation from PPCs and weight loss were inhibited by N(gamma)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of eNOS, in ECIRS1 mice and eNOSKO mice. The mechanism mediating NO's action on PPC differentiation into BAT was identified as the activation of solubilized guanylate cyclase/PKGIα (cGMP protein-dependent kinase Iα)/GSK3ß (glycogen synthase kinase 3ß) pathways. Plasma lipidomics from ECIRS1 mice with NO-induced increased BAT mass revealed elevated 12,13-diHOME production. Infusion of 12,13-diHOME improved endothelial dysfunction and decreased atherosclerosis, whereas its reduction had opposite effects in ApoE-/-mice. CONCLUSIONS: Activation of eNOS and endothelial cells by insulin enhanced the differentiation of PPC to BAT and its lipokines and improved systemic bioenergetics and atherosclerosis, suggesting that endothelial dysfunction is a major contributor of energy disequilibrium in obesity.


Assuntos
Tecido Adiposo Marrom , Aterosclerose , Tecido Adiposo Marrom/metabolismo , Animais , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Células Endoteliais/metabolismo , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo
2.
Arch Biochem Biophys ; 734: 109501, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36592647

RESUMO

A well-tuned inflammatory response is crucial for an effective immune process. Nuclear factor-kappa B (NF-κB) is a key mediator of inflammatory and innate immunity responses, and its dysregulation is closely associated with immune-related diseases. MicroRNAs (miRNAs) are important inflammation modulators. However, miRNA-regulated mechanisms that implicate NF-κB activity are not fully understood. This study aimed to identify a potential miRNA that could modulate the dysregulated NF-κB signaling during inflammation. We identified miR-582-5p that was significantly downregulated in inflamed murine adipose tissues and RAW264.7 cells. S-phase kinase-associated protein 1 (SKP1), a core component of an E3 ubiquitin ligase that regulates the NF-κB pathway, was proposed as a biological target of miR-582-5p by using TargetScan. The binding of miR-582-5p to a 3'-untranslated region site on Skp1 was confirmed using a dual-luciferase reporter assay; in addition, transfection with a miR-582-5p mimic suppressed SKP1 expression in RAW264.7 cells. Importantly, exogenous miR-582-5p attenuated the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 through suppressing the degradation of the NF-κB inhibitor alpha, followed by the nuclear translocation of NF-κB. Therefore, exogenously applied miR-582-5p can attenuate the NF-κB signaling pathway via targeting Skp1; this provides a prospective therapeutic strategy for treating inflammatory and immune diseases.


Assuntos
MicroRNAs , NF-kappa B , Animais , Camundongos , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais
3.
Biochem Biophys Res Commun ; 533(4): 1076-1082, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33012508

RESUMO

SPOCK1 is a calcium-binding matricellular proteoglycan that has been extensively studied in several cancer cells. Previously, we generated a mouse line overexpressing SPOCK1 (Spock1-Tg mouse) and showed that SPOCK1 might play an important role in drug-induced gingival overgrowth, indicating that it possesses physiological functions in non-cancer diseases as well. Although SPOCK1 was reported to be secreted from human adipocytes, its role in adipocyte physiology has not been addressed yet. In this study, SPOCK1 protein expression was confirmed in pancreas, adipose tissues, spleen, and liver of normal diet (ND)-fed mice. Interestingly, SPOCK1 was up-regulated in the pancreas and adipose tissues of the high-fat diet (HFD)-fed mice. Spock1-Tg mice fed with ND showed increased maturation in epididymal and inguinal adipose tissues. In addition, Spock1 overexpression strongly decreased expression of UCP-1 in adipose tissues, suggesting that SPOCK1 might regulate thermogenic function through suppression of UCP-1 expression. Finally, exogenous SPOCK1 treatment directly accelerated the differentiation of 3T3-L1 adipocytes, accompanied by the up-regulation of adipocyte differentiation-related gene expression. In conclusion, we demonstrated for the first time that SPOCK1 induced adipocyte differentiation via the up-regulation of adipogenesis-related genes.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , Tecido Adiposo/citologia , Regulação da Expressão Gênica/genética , Proteoglicanas/metabolismo , Células 3T3-L1 , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica , Imuno-Histoquímica , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pâncreas/metabolismo , Proteoglicanas/genética , Proteínas Recombinantes , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Regulação para Cima
4.
Arterioscler Thromb Vasc Biol ; 38(1): 92-101, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29162603

RESUMO

OBJECTIVE: The objective of this study is to evaluate whether exogenously induced hyperinsulinemia may increase the development of atherosclerosis. APPROACH AND RESULTS: Hyperinsulinemia, induced by exogenous insulin implantation in high-fat fed (60% fat HFD) apolipoprotein E-deficient mice (ApoE-/-) mice, exhibited insulin resistance, hyperglycemia, and hyperinsulinemia. Atherosclerosis was measured by the accumulation of fat, macrophage, and extracellular matrix in the aorta. After 8 weeks on HFD, ApoE-/- mice were subcutaneously implanted with control (sham) or insulin pellet, and phlorizin, a sodium glucose cotransporters inhibitor (1/2)inhibitor, for additional 8 weeks. Intraperitoneal glucose tolerance test showed that plasma glucose levels were lower and insulin and IGF-1 (insulin-like growth factor-1) levels were 5.3- and 3.3-fold higher, respectively, in insulin-implanted compared with sham-treated ApoE-/- mice. Plasma triglyceride, cholesterol, and lipoprotein levels were decreased in mice with insulin implant, in parallel with increased lipoprotein lipase activities. Atherosclerotic plaque by en face and complexity staining showed significant reductions of fat deposits and expressions of vascular adhesion molecule-1, tumor necrosis factor-α, interleukin 6, and macrophages in arterial wall while exhibiting increased activation of pAKT and endothelial nitric oxide synthase (P<0.05) comparing insulin-implanted versus sham HFD ApoE-/- mice. No differences were observed in atherosclerotic plaques between phlorizin-treated and sham HFD ApoE-/- mice, except phlorizin significantly lowered plasma glucose and glycated hemoglobin levels while increased glucosuria. Endothelial function was improved only by insulin treatment through endothelial nitric oxide synthase/nitric oxide activations and reduced proinflammatory (M1) and increased anti-inflammatory (M2) macrophages, which were inhibited by endothelial nitric oxide synthase inhibitor. CONCLUSIONS: Exogenous insulin decreased atherosclerosis by lowering inflammatory cytokines, macrophages, and plasma lipids in HFD-induced hyperlipidemia, insulin resistant and mildly diabetic ApoE-/- mice.


Assuntos
Aterosclerose/prevenção & controle , Citocinas/sangue , Diabetes Mellitus/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Hipoglicemiantes/administração & dosagem , Mediadores da Inflamação/sangue , Inflamação/prevenção & controle , Insulina/administração & dosagem , Lipídeos/sangue , Animais , Anti-Inflamatórios/administração & dosagem , Aterosclerose/sangue , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus/sangue , Diabetes Mellitus/patologia , Diabetes Mellitus/fisiopatologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Implantes de Medicamento , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Hipoglicemiantes/efeitos adversos , Inflamação/sangue , Inflamação/patologia , Inflamação/fisiopatologia , Resistência à Insulina , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Knockout para ApoE , Florizina/farmacologia , Placa Aterosclerótica
5.
Biochem Biophys Res Commun ; 495(1): 740-748, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29137982

RESUMO

OBJECTIVES: It is well-known that the complement system plays an essential role in host immunity. Observational studies have indicated that complement system-related molecules such as complement factor B (CfB) and other components are correlated with obesity and/or insulin resistance parameters. In this study, we investigated the role of adipocyte-derived CfB in adipose tissue metabolism. METHODS: We investigated the expression level of complement system-related genes in adipocytes. To understand the role of CfB in adipocyte, we performed Cfb overexpression in 3T3-L1 preadipocytes and generated adipocyte-specific Cfb transgenic mice. RESULTS: Cfb expression was markedly enhanced in 3T3-L1 adipocytes co-cultured with macrophages following endotoxin stimulation. In Cfb-overexpressing cells, the expression of adipocyte differentiation/maturation-related genes encoding peroxisome proliferator-activated receptor γ (Pparγ), adipocyte Protein 2 and perilipin was significantly enhanced. Cfb transgenic mice showed a marked increase in the expression of genes encoding Pparγ, perilipin, sterol regulatory element-binding protein 1 c, and Cd36 in the subcutaneous adipose tissue. CONCLUSIONS: CfB plays a crucial role in late-phase of adipocyte differentiation and subsequent lipid droplet formation.


Assuntos
Adipócitos/imunologia , Tecido Adiposo/imunologia , Diferenciação Celular/imunologia , Fator B do Complemento/imunologia , Imunidade Inata/imunologia , Gotículas Lipídicas/imunologia , Células 3T3-L1 , Adipócitos/citologia , Adipogenia/imunologia , Tecido Adiposo/citologia , Animais , Proliferação de Células , Células Cultivadas , Masculino , Camundongos , Camundongos Transgênicos
6.
Horm Metab Res ; 50(2): 160-167, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29132171

RESUMO

Metabolic endotoxemia has been implicated in the pathogenesis of type 2 diabetes. In addition to adipose tissue inflammation, inflammatory cell infiltration is also observed in islets, although its effect on islets is largely unknown. We hypothesized that macrophage infiltration into islets leads to impairment of α or ß cell function, which ultimately act to exacerbate the pathophysiology of diabetes. Gene expression in a murine α cell line, αTC1, and ß cell line, ßTC6, was investigated by DNA microarray after co-culturing the cells with a murine macrophage cell line, RAW 264.7, in the presence or absence of bacterial endotoxin. Among the genes showing highly upregulated expression, genes specifically upregulated only in ß cells were evaluated to determine the roles of the gene products on the cellular function of ß cells. In both α and ß cells, expression of type I interferon-responsive genes was highly upregulated upon endotoxin stimulation. Among these genes, expression of the X-linked inhibitor of apoptosis (Xiap)-associated factor 1 (Xaf1) gene, which is associated with the induction of apoptosis, was specifically enhanced in ß cells by endotoxin stimulation. This upregulation appeared to be mediated by macrophage-derived interferon ß (IFNß), as endotoxin-stimulated macrophages produced higher amounts of IFNß, and exogenous addition of IFNß into ßTC6 cultures resulted in increased Xaf1 protein production and cleaved caspase 3, which accelerated ß-cell apoptosis. Macrophages activated by metabolic endotoxemia infiltrated into islets and produced IFNß, which induced ß-cell apoptosis by increasing the expression of Xaf1.


Assuntos
Apoptose , Endotoxemia/patologia , Proteínas F-Box/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Interferon beta/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Técnicas de Cocultura , Camundongos , Células RAW 264.7 , Regulação para Cima/genética
7.
Biochem Biophys Res Commun ; 477(2): 241-6, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27311858

RESUMO

Interleukin-17A (IL-17A) is known to induce inflammatory responses and to be involved in the pathogenesis of not only autoimmune diseases, but also several metabolic and infectious diseases. In this study, IL-17A is shown to induce IL-6 expression in 3T3-L1 mature adipocytes. Interestingly, we found that IL-17A synergistically amplified TNFα-induced secretion of IL-6 and upregulation of IL-17RA expression in 3T3-L1 adipocytes. Its synergistic effects on IL-6 production were inhibited by pre-treatment with inhibitors of IκBα and JNK. Furthermore, IL-17A cooperatively enhanced LPS-mediated IL-6 production in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. In addition, IL-17A also enhanced CCL20 production in 3T3-L1 adipocytes stimulated with TNFα or co-cultured with LPS-stimulated RAW macrophages. In high-fat diet-fed mouse epididymal adipose tissues, IL-17RA and RORγt mRNA levels were significantly increased and the serum level of CCL20 was also upregulated. Taken together, these data show that, in adipose tissues, IL-17A contributes to exacerbating insulin resistance-enhancing IL-6 production and promotes the infiltration of Th17 cells in cooperation with TNFα; these findings represent a novel hypothesis for the association between IL-17A-producing cells and type 2 diabetes.


Assuntos
Adipócitos/imunologia , Quimiocina CCL20/imunologia , Interleucina-17/imunologia , Interleucina-6/imunologia , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Interleucina-17/administração & dosagem , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
8.
Am J Physiol Endocrinol Metab ; 309(3): E214-23, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26015438

RESUMO

Dipeptidyl peptidase IV (DPP-IV) expression in visceral adipose tissue is reportedly increased in obese patients, suggesting an association of DPP-IV with inflammation. In this study, first, lipopolysaccharide (LPS)- or palmitate-induced elevations of inflammatory cytokine mRNA expressions in RAW264.7 macrophages were shown to be significantly suppressed by coincubation with a DPP-IV inhibitor, anagliptin (10 µM), despite low DPP-IV expression in the RAW264.7 cells. Regarding the molecular mechanism, LPS-induced degradation of IκBα and phosphorylations of p65, JNK, and p38, as well as NF-κB and AP-1 promoter activities, were revealed to be suppressed by incubation with anagliptin, indicating suppressive effects of anagliptin on both NF-κB and AP-1 signaling pathways. Anagliptin also acted on 3T3-L1 adipocytes, weakly suppressing the inflammatory cytokine expressions induced by LPS and TNFα. When 3T3-L1 and RAW cells were cocultured and stimulated with LPS, the effects of anagliptin on the suppression of cytokine expressions in 3T3-L1 adipocytes were more marked and became evident at the 10 µM concentration. Anti-inflammatory effects of anagliptin were also observed in vivo on the elevated hepatic and adipose expressions and serum concentrations of inflammatory cytokines in association with the suppression of hepatic NF-κB transcriptional activity in LPS-infused mice. Taking these observations together, the anti-inflammatory properties of anagliptin may be beneficial in terms of preventing exacerbation of diabetes and cardiovascular events.


Assuntos
Adipócitos Brancos/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Fígado/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Pirimidinas/farmacologia , Células 3T3-L1 , Adipócitos Brancos/imunologia , Adipócitos Brancos/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Linhagem Celular Transformada , Técnicas de Cocultura , Citocinas/agonistas , Citocinas/antagonistas & inibidores , Citocinas/genética , Citocinas/metabolismo , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/agonistas , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Pirimidinas/uso terapêutico , Elementos de Resposta/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/prevenção & controle
9.
Am J Physiol Gastrointest Liver Physiol ; 308(2): G151-8, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25428903

RESUMO

Several lines of evidence have suggested a role of gut microbiota in the etiology of nonalcoholic steatohepatitis (NASH). NASH subjects reportedly showed a prolonged orocecal transit time coexistent with small intestinal bacterial overgrowth. We considered the possibility that enhanced gastrointestinal motility would influence gut microbiota and thus investigated the effects of the gastroprokinetic agent mosapride citrate (MC) on gut microbiota and the development of NASH using a methionine-choline deficient (MCD) diet-fed rodent model. Mice were divided into three groups, given the normal chow diet (NCD), the MCD diet, or the MCD diet containing 10 mg·kg(-1)·day(-1) of MC (MCD plus MC) for 6 wk. NASH development was evaluated based on hepatic histochemical findings, serum parameters and various mRNA and/or protein expression levels. MC treatment suppressed MCD diet-induced NASH development, with reduced serum lipopolysaccharide and increased plasma glucagon-like peptide-1 (GLP-1) concentrations. Calculation of the relative abundance of each strain based on gut microbiota analyses indicated lactic acid bacteria specifically, such as Bifidobacterium and Lactobacillus, in feces to be decreased in the MCD, compared with the NCD group. Interestingly, the reduction in lactic acid bacteria in the MCD diet group was reversed in the MCD plus MC group. In addition, colon inflammation observed in the MCD diet group was reduced in the MCD plus MC group. Therefore, MC showed a protective effect against MCD diet-induced NASH development in our rodent model, with possible involvements of increased fecal lactic acid bacteria, protection against colon inflammation and elevated plasma GLP-1.


Assuntos
Benzamidas/farmacologia , Fezes/microbiologia , Peptídeo 1 Semelhante ao Glucagon/sangue , Inflamação/metabolismo , Ácido Láctico/metabolismo , Fígado/efeitos dos fármacos , Morfolinas/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Deficiência de Colina/metabolismo , Fezes/química , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
10.
J Biol Chem ; 288(28): 20692-701, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23720771

RESUMO

Pin1 and Par14 are parvulin-type peptidyl-prolyl cis/trans isomerases. Although numerous proteins have been identified as Pin1 substrates, the target proteins of Par14 remain largely unknown. Par14 expression levels are increased in the livers and embryonic fibroblasts of Pin1 KO mice, suggesting a compensatory relationship between the functions of Pin1 and Par14. In this study, the association of Par14 with insulin receptor substrate 1 (IRS-1) was demonstrated in HepG2 cells overexpressing both as well as endogenously in the mouse liver. The analysis using deletion-mutated Par14 and IRS-1 constructs revealed the N-terminal portion containing the basic domain of Par14 and the two relatively C-terminal portions of IRS-1 to be involved in these associations, in contrast to the WW domain of Pin1 and the SAIN domain of IRS-1. Par14 overexpression in HepG2 markedly enhanced insulin-induced IRS-1 phosphorylation and its downstream events, PI3K binding with IRS-1 and Akt phosphorylation. In contrast, treating HepG2 cells with Par14 siRNA suppressed these events. In addition, overexpression of Par14 in the insulin-resistant ob/ob mouse liver by adenoviral transfer significantly improved hyperglycemia with normalization of hepatic PEPCK and G6Pase mRNA levels, and gene suppression of Par14 using shRNA adenovirus significantly exacerbated the glucose intolerance in Pin1 KO mice. Therefore, although Pin1 and Par14 associate with different portions of IRS-1, the prolyl cis/trans isomerization in multiple sites of IRS-1 by these isomerases appears to be critical for efficient insulin receptor-induced IRS-1 phosphorylation. This process is likely to be one of the major mechanisms regulating insulin sensitivity and also constitutes a potential therapeutic target for novel insulin-sensitizing agents.


Assuntos
Proteínas Substratos do Receptor de Insulina/metabolismo , Insulina/farmacologia , Peptidilprolil Isomerase/metabolismo , Animais , Sítios de Ligação/genética , Intolerância à Glucose/genética , Células HEK293 , Células Hep G2 , Humanos , Hiperglicemia/genética , Hiperglicemia/terapia , Hipoglicemiantes/farmacologia , Immunoblotting , Proteínas Substratos do Receptor de Insulina/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Mutação , Peptidilprolil Isomerase de Interação com NIMA , Obesidade/sangue , Obesidade/genética , Peptidilprolil Isomerase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA
11.
Nephrol Dial Transplant ; 29(3): 611-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24235082

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is an important risk factor for coronary heart disease, and previous studies indicated the involvement of low-grade inflammation in the pathogenesis of CKD. METHODS: The study was designed to (i) identify and confirm genes and their products upregulated in mesangial cells cocultured with endotoxin-stimulated macrophages and (ii) determine the clinical relevance of genes and proteins upregulated in mesangial cells under inflammatory conditions by an epidemiological approach. RESULTS: DNA microarray analysis revealed upregulated expression of many genes and their products including several cytokines and chemokines, as well as the inflammatory marker, lipocalin 2 gene. The gene expression and protein upregulation of lipocalin 2 were synergistically affected by endotoxin and tumor necrosis factor (TNF)-α stimulation. In human studies, lipocalin 2 level was significantly associated with creatinine (r = 0.419, P < 0.001) and negatively associated with eGFR (r = -0.365, P < 0.001). Multiple logistic regression analysis revealed a significant association between lipocalin 2 and soluble tumor necrosis factor receptor 2 (sTNF-R2), eGFR and uric acid in general subjects attending regular annual medical check-up (n = 420). When subjects with diabetes were excluded from the analysis, lipocalin 2 remained associated with sTNF-R2, eGFR and uric acid. CONCLUSIONS: Since an activated TNF system, as demonstrated by elevated sTNF-R2, and elevated uric acid were recently implicated in an elevated CKD risk, we conclude that inflammation could play an important role in the pathogenesis of CKD, and that lipocalin 2 is a potential universal marker for impaired kidney function. Furthermore, the results obtained by the current microarray analysis could improve the understanding of gene profiles associated with the pathophysiology of CKD under inflammatory conditions.


Assuntos
Proteínas de Fase Aguda/genética , Lipocalinas/genética , Proteínas Proto-Oncogênicas/genética , Insuficiência Renal Crônica/metabolismo , Proteínas de Fase Aguda/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Linhagem Celular , Técnicas de Cocultura , Creatinina/sangue , Feminino , Humanos , Inflamação/metabolismo , Lipocalina-2 , Lipocalinas/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/imunologia , Transcriptoma
12.
Jpn Dent Sci Rev ; 60: 15-21, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38098853

RESUMO

The prevalence and severity of periodontitis are increased and advanced in diabetes. Severe periodontitis elicits adverse effects on diabetes by impairing insulin actions due to systemic microinflammation. Recent studies unveil the emerging findings and molecular basis of the bidirectional relationship between periodontitis and diabetes. In addition to conventional mechanisms such as hyperglycemia, hyperlipidemia, and chronic inflammation, deficient insulin action may play a pathogenic role in the progression of periodontitis under diabetes. Epidemiologically, from the viewpoint of the adverse effect of periodontitis on diabetes, recent studies have suggested that Asians including Japanese and Asian Americans with diabetes and mild obesity (BMI <25 kg/m2) should pay more attention to their increased risk for cardiovascular diseases. In this review, we summarize recent findings on the effect of diabetes on periodontitis from the viewpoint of abnormalities in metabolism and insulin resistance with novel mechanisms, and the influence of periodontitis on diabetes mainly focused on micro-inflammation related to mature adipose tissue and discuss future perspectives about novel approaches to interrupt the adverse interrelationship.

13.
Biomed Res Int ; 2024: 8864513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304347

RESUMO

Aim: The present study evaluated the therapeutic effects of luteolin in alleviating pulpitis of dental pulp- (DP-) derived microvesicles (MVs) via the inhibition of protein kinase R- (PKR-) mediated inflammation. Methodology. Proteomic analysis of immortalized human dental pulp (DP-1) cell-derived MVs was performed to identify PKR-associated molecules. The effect of luteolin on PKR phosphorylation in DP-1 cells and the expression of tumor necrosis factor-α (TNF-α) in THP-1 macrophage-like cells were validated. The effect of luteolin on cell proliferation was compared with that of chemical PKR inhibitors (C16 and 2-AP) and the unique commercially available sedative guaiacol-parachlorophenol. In the dog experimental pulpitis model, the pulps were treated with (1) saline, (2) guaiacol-parachlorophenol, and (3) luteolin. Sixteen teeth from four dogs were extracted, and the pulp tissues were analyzed using hematoxylin and eosin staining. Immunohistochemical staining was performed to analyze the expression of phosphorylated PKR (pPKR), myeloperoxidase (MPO), and CD68. Experimental endodontic-periodontal complex lesions were established in mouse molar through a silk ligature and simultaneous MV injection. MVs were prepared from DP-1 cells with or without pretreatment with 2-AP or luteolin. A three-dimensional microcomputed tomography analysis was performed on day 7 (n = 6). Periodontal bone resorption volumes were calculated for each group (nonligated-ligated), and the ratio of bone volume to tissue volume was measured. Results: Proteomic analysis identified an endogenous PKR activator, and a protein activator of interferon-induced PKR, also known as PACT, was included in MVs. Luteolin inhibited the expressions of pPKR in DP-1 cells and TNF-α in THP-1 cells with the lowest suppression of cell proliferation. In the dog model of experimental pulpitis, luteolin treatment suppressed the expression of pPKR-, MPO-, and CD68-positive cells in pulp tissues, whereas guaiacol-parachlorophenol treatment caused coagulative necrosis and disruption. In a mouse model of endodontic-periodontal complex lesions, luteolin treatment significantly decreased MV-induced alveolar bone resorption. Conclusion: Luteolin is an effective and safe compound that inhibits PKR activation in DP-derived MVs, enabling pulp preservation.


Assuntos
Perda do Osso Alveolar , Clorofenóis , Pulpite , Cães , Humanos , Camundongos , Animais , Luteolina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Microtomografia por Raio-X , Proteômica , Inflamação/metabolismo , Guaiacol , Polpa Dentária/metabolismo
14.
Front Physiol ; 14: 1298813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156070

RESUMO

Drug-induced gingival overgrowth (DIGO), induced by certain immunosuppressive drugs, antihypertensive agents, and antiepileptic drugs, may contribute to the formation of deeper periodontal pockets and intractableness in periodontitis. To date, multiple factors such as enhanced matrix production, inflammation, and reduced matrix degradation might be involved in the pathogenesis of DIGO. We have previously reported that SPOCK-1, a heparan sulfate proteoglycan, could affect gingival thickening by promoting epithelial-to-mesenchymal transition (EMT) in gingival keratinocytes. However, few studies have investigated whether a combination of these factors enhances the DIGO phenotype in animal models. Therefore, we investigated whether SPOCK-1, periodontal inflammation, and cyclosporin-A (CsA) could cooperatively promote gingival overgrowth. We first confirmed that Spock-1 overexpressing (Spock1-Tg) mice showed significantly thicker gingiva and greater alveolar bone loss than WT mice in response to ligature-induced experimental periodontitis. DIGO was induced by the combination of CsA administration and experimental periodontitis was significantly enhanced in Spock1-Tg mice compared to that in WT mice. Ligature-induced alveolar bone loss in CsA-treated Spock1-Tg mice was also significantly greater than that in CsA-treated WT mice, while being accompanied by an increase in Rankl and Col1a1 levels and a reduction in matrix metalloprotease expression. Lastly, SPOCK-1 promoted RANKL-induced osteoclast differentiation in both human peripheral blood mononuclear cells and murine macrophages, while peritoneal macrophages from Spock1-Tg mice showed less TNFα and IL-1ß secretion than WT mice in response to Escherichia coli lipopolysaccharide. These results suggest that EMT, periodontal inflammation, and subsequent enhanced collagen production and reduced proteinase production contribute to CsA-induced DIGO pathogenesis.

15.
Diabetes ; 72(7): 986-998, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058471

RESUMO

Insulin resistance and hyperglycemia are risk factors for periodontitis and poor wound healing in diabetes, which have been associated with selective loss of insulin activation of the PI3K/Akt pathway in the gingiva. This study showed that insulin resistance in the mouse gingiva due to selective deletion of smooth muscle and fibroblast insulin receptor (SMIRKO mice) or systemic metabolic changes induced by a high-fat diet (HFD) in HFD-fed mice exacerbated periodontitis-induced alveolar bone loss, preceded by delayed neutrophil and monocyte recruitment and impaired bacterial clearance compared with their respective controls. The immunocytokines, CXCL1, CXCL2, MCP-1, TNFα, IL-1ß, and IL-17A, exhibited delayed maximal expression in the gingiva of male SMIRKO and HFD-fed mice compared with controls. Targeted overexpression of CXCL1 in the gingiva by adenovirus normalized neutrophil and monocyte recruitment and prevented bone loss in both mouse models of insulin resistance. Mechanistically, insulin enhanced bacterial lipopolysaccharide-induced CXCL1 production in mouse and human gingival fibroblasts (GFs), via Akt pathway and NF-κB activation, which were reduced in GFs from SMIRKO and HFD-fed mice. These results provided the first report that insulin signaling can enhance endotoxin-induced CXCL1 expression to modulate neutrophil recruitment, suggesting CXCL1 as a new therapeutic direction for periodontitis or wound healing in diabetes. ARTICLE HIGHLIGHTS: The mechanism for the increased risks for periodontitis in the gingival tissues due to insulin resistance and diabetes is unclear. We investigated how insulin action in gingival fibroblasts modulates the progression of periodontitis in resistance and diabetes. Insulin upregulated the lipopolysaccharide-induced neutrophil chemoattractant, CXCL1, production in gingival fibroblasts via insulin receptors and Akt activation. Enhancing CXCL1 expression in the gingiva normalized diabetes and insulin resistance-induced delays in neutrophils recruitment and periodontitis. Targeting dysregulation of CXCL1 in fibroblasts is potentially therapeutic for periodontitis and may also improve wound healing in insulin resistance and diabetes.


Assuntos
Diabetes Mellitus , Resistência à Insulina , Insulinas , Periodontite , Animais , Humanos , Masculino , Camundongos , Quimiocina CXCL1 , Resistência à Insulina/genética , Insulinas/uso terapêutico , Lipopolissacarídeos , Infiltração de Neutrófilos , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
16.
Front Cell Dev Biol ; 10: 1061216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531939

RESUMO

The expression profiles of exosomal microRNAs (miRNAs) are regulated by the microenvironment, and appropriate priming with mesenchymal stem cells (MSCs) is one of the strategies to enhance the paracrine potency of MSCs. Our previous work demonstrated that exosomes from tumor necrosis factor (TNF)-α-primed human gingiva-derived MSCs (GMSCs) could be a therapeutic tool against periodontitis, and that TNFα-inducible exosomal miR-1260b is essential for the inhibition of alveolar bone loss. However, the precise molecular mechanism underlying miR-1260b-mediated inhibition of osteoclastogenesis is not yet fully understood. Here, we found that the activating transcription factor (ATF)-6ß, a novel miR-1260b-targeting gene, is critical for the regulation of osteoclastogenesis under endoplasmic reticulum (ER) stress. An experimental periodontal mouse model demonstrated that induction of ER stress was accompanied by enhanced ATF6ß expression, and local administration of miR-1260b and ATF6ß siRNA using polyethylenimine nanoparticles (PEI-NPs) significantly suppressed the periodontal bone resorption. In periodontal ligament (PDL) cells, the ER stress inducer, tunicamycin, enhanced the expression of the receptor activator of NF-κB ligand (RANKL), while miR-1260b-mediated downregulation of ATF6ß caused RANKL inhibition. Furthermore, the secretome from miR-1260b/ATF6ß-axis-activated PDL cells inhibited osteoclastogenesis in human CD14+ peripheral blood-derived monocytes. These results indicate that the miR-1260b/ATF6ß axis mediates the regulation of ER stress, which may be used as a novel therapeutic strategy to treat periodontal disease.

17.
Sci Rep ; 12(1): 13344, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922474

RESUMO

Immunoregulatory properties of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are promising. Gingival tissue-derived MSCs (GMSCs) have unique immunoregulatory capacity and secrete large amounts of EVs. Recent findings suggest that priming MSCs with inflammatory stimuli is an effective strategy for cell-free therapy. However, the precise mechanism by which the contents of EVs are customized has not been fully elucidated. Here, we show that EVs derived from GMSCs primed with a combination of two pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interferon-α (IFN-α), synergistically promote anti-inflammatory M2 macrophage polarization by increasing the expression of cluster of differentiation 73 (CD73) and CD5 molecule-like (CD5L). Expression of CD73 by TNF-α/IFN-α stimulation was transcriptionally upregulated by the activation of mammalian target of rapamycin signaling and nuclear translocation of hypoxia-inducible factor 1α in GMSCs. TNF-α/IFN-α treatment also significantly increased the expression of CD5L mRNA via the transcription factor DNA-binding protein inhibitor ID3 and liver X receptor. Interestingly, exosomal CD5L is a prerequisite for the synergistic effect of EVs-mediated M2 macrophage polarization. These results indicate that combined pre-licensing with TNF-α and IFN-α in GMSCs is ideal for enhancing the anti-inflammatory function of EVs, which contributes to the establishment of a therapeutic tool.


Assuntos
Vesículas Extracelulares , Fator de Necrose Tumoral alfa , Vesículas Extracelulares/metabolismo , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Ativação de Macrófagos , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Acta Diabetol ; 59(10): 1275-1286, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35829914

RESUMO

AIMS: Pancreatic ß-cell apoptosis may be involved in the onset and progression of type 2 diabetes mellitus, although its mechanism remains unclear. We previously demonstrated that macrophage-derived interferon (IFN) ß induced X-linked inhibitor of apoptosis-associated factor 1 (XAF1) expression in ß-cells and accelerated ß-cell apoptosis in vitro. Here, we explored the effects of XAF1 on ß-cell function and progression of diabetes in vivo. METHODS: Pancreatic ß-cell-selective XAF1 overexpressing (Xaf1 Tg) mice were generated. Xaf1 Tg mice and their wild-type (WT) littermates were fed either a normal diet or a 40% or 60% high-fat diet (HFD). The effects of ß-cell XAF1 on ß-cell apoptosis and exacerbation of diabetes were investigated. RESULTS: Palmitic acid induced IFNß expression in macrophages, and HFD intake promoted macrophage infiltration in pancreatic islets, both of which cooperatively upregulated XAF1 expression in mouse islets. Furthermore, HFD-fed Xaf1 Tg mice demonstrated increased ß-cell apoptosis, lowered insulin expression, and impaired glucose tolerance compared with WT mice fed the same diet. These effects were more pronounced in the 60%HFD group than in the 40%HFD group. CONCLUSIONS: Pancreatic ß-cell XAF1 expression was enhanced via HFD-induced, macrophage-derived IFNß, which promoted ß-cell apoptosis and led to a reduction in insulin secretion and progression of diabetes. To our knowledge, this is the first report to demonstrate an association between pancreatic ß-cell XAF1 overexpression and exacerbation of diabetes, thus providing insight into the mechanism of ß-cell mass reduction in diabetes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
19.
JCI Insight ; 7(5)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133981

RESUMO

Diabetic nephropathy (DN) arises from systemic and local changes in glucose metabolism and hemodynamics. We have reported that many glycolytic and mitochondrial enzymes, such as pyruvate kinase M2 (PKM2), were elevated in renal glomeruli of DN-protected patients with type 1 and type 2 diabetes. Here, mice with PKM2 overexpression specifically in podocytes (PPKM2Tg) were generated to uncover the renal protective function of PPKM2Tg as a potential therapeutic target that prevented elevated albumin/creatinine ratio (ACR), mesangial expansion, basement membrane thickness, and podocyte foot process effacement after 7 months of streptozotocin-induced (STZ-induced) diabetes. Furthermore, diabetes-induced impairments of glycolytic rate and mitochondrial function were normalized in diabetic PPKM2Tg glomeruli, in concordance with elevated Ppargc1a and Vegf expressions. Restored VEGF expression improved glomerular maximal mitochondrial function in diabetic PPKM2Tg and WT mice. Elevated VEGF levels were observed in the glomeruli of DN-protected patients with chronic type 1 diabetes and clinically correlated with estimated glomerular filtration (GFR) - but not glycemic control. Mechanistically, the preservations of mitochondrial function and VEGF expression were dependent on tetrameric structure and enzymatic activities of PKM2 in podocytes. These findings demonstrate that PKM2 structure and enzymatic activation in podocytes can preserve the entire glomerular mitochondrial function against toxicity of hyperglycemia via paracrine factors such as VEGF and prevent DN progression.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Podócitos , Piruvato Quinase , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Humanos , Camundongos , Podócitos/metabolismo , Piruvato Quinase/metabolismo , Regeneração , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-34031140

RESUMO

INTRODUCTION: Enlarged adipose tissue is characterized by infiltration of activated immune cells and increased expression of chemokines recruiting these cells including C-C motif ligand 19 (CCL19), although the role of adipose CCL19 is still inconclusive. RESEARCH DESIGN AND METHODS: Adipocyte-specific Ccl19 knock-in (KI) mice were generated, and the mice were fed either a normal diet or 40% or 60% fat diet (FD) to investigate the effects of CCL19 on the induction of inflammation and lipid metabolism. RESULTS: Ccl19KI mice exhibited increased inflammatory signs in adipose tissue and enlarged subcutaneous white and brown adipose tissue than those of wild-type (WT) mice. The adipose tissue of Ccl19KI mice was characterized by increased extracellular signal-regulated kinase 1/2 and decreased AMP-activated protein kinase α phosphorylation. The protein expression of peroxisome proliferator-activated receptor γ coactivator 1α and uncoupling protein 1 was significantly reduced in brown adipose tissue of Ccl19KI mice compared with that in WT mice. The most remarkable changes between genotypes were observed in mice fed a 40% FD. CONCLUSION: A 40% FD enhanced the effects of CCL19 overexpression, and these mice could be a suitable model to study metabolic disorders in overweight Asians.


Assuntos
Resistência à Insulina , Tecido Adiposo Branco , Animais , Resistência à Insulina/genética , Ligantes , Camundongos , Obesidade , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA