Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1444: 165-176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467979

RESUMO

In recent years, dysbiosis, abnormalities in the gut microbiota, has been reported to be associated with the development of many diseases, and improving the gut microbiota is important for health maintenance. It has been shown that the host recognizes and regulates intestinal bacteria by means of IgA antibodies secreted into the gut, but the precise nature of the commensal gut bacteria recognized by each IgA antibody is unclear. We have cloned monoclonal IgA antibodies from mouse intestinal IgA-producing cells and are searching for bacterial molecules recognized by each IgA clone. Although the interaction of IgA antibodies with intestinal bacteria is still largely unknown and requires further basic research, we discuss the potential use of orally ingestible IgA antibodies as agents to improve intestinal microbiota.


Assuntos
Imunoglobulina A , Simbiose , Humanos , Animais , Camundongos , Intestinos/microbiologia , Anticorpos Monoclonais , Bactérias
2.
Nat Immunol ; 12(3): 264-70, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21258321

RESUMO

To elucidate the specific role of somatic hypermutation (SHM) in mucosal immunity, we generated mice carrying a knock-in point mutation in Aicda, which encodes activation-induced cytidine deaminase (AID), an enzyme essential to SHM and class-switch recombination (CSR). These mutant AID(G23S) mice had much less SHM but had normal amounts of immunoglobulin in both serum and intestinal secretions. AID(G23S) mice developed hyperplasia of germinal center B cells in gut-associated lymphoid tissues, accompanied by expansion of microflora in the small intestine. Moreover, AID(G23S) mice had more translocation of Yersinia enterocolitica into mesenteric lymph nodes and were more susceptible than wild-type mice to oral challenge with cholera toxin. Together our results indicate that SHM is critical in maintaining intestinal homeostasis and efficient mucosal defense.


Assuntos
Citidina Desaminase/genética , Citidina Desaminase/imunologia , Homeostase/imunologia , Mucosa Intestinal/imunologia , Intestinos/imunologia , Mutação , Animais , Técnicas de Introdução de Genes , Genótipo , Homeostase/genética , Camundongos , Hipermutação Somática de Imunoglobulina/genética , Hipermutação Somática de Imunoglobulina/imunologia
3.
Int Immunol ; 34(5): 249-262, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34971392

RESUMO

Activated B cells can enter germinal centers (GCs) for affinity maturation to produce high-affinity antibodies. However, which activated B cells will enter GCs remains unknown. Here, we found a small population of CD11b+IgA+ B cells located outside of GCs in murine Peyer's patches (PPs). After injection of the CD11b+IgA+ PP B cells into a PP of a recipient mouse, they entered GCs forty hours later. They expressed GC surface markers and pre-GC B cell genes, suggesting that CD11b provides a novel surface marker of pre-GC IgA+ B cells in murine PPs. Furthermore, independently of dendritic cell activation, CD11b expression on B cells can be induced by bacterial antigens, such as pam3CSK4 and heat-killed Escherichia coli in vitro. In addition, mice orally administered with pam3CSK4 or heat-killed E. coli increased the number of PP GC B cells within two days, and enhanced the mucosal antigen-specific IgA response. Our results demonstrate that the induction of CD11b on B cells is a promising marker for selecting an effective mucosal vaccine adjuvant.


Assuntos
Antígeno CD11b/imunologia , Integrinas , Nódulos Linfáticos Agregados , Animais , Escherichia coli , Centro Germinativo , Imunoglobulina A , Integrinas/metabolismo , Camundongos
4.
Nat Immunol ; 11(2): 148-54, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19966806

RESUMO

Activation-induced cytidine deaminase (AID) is essential for the generation of antibody memory but also targets oncogenes, among other genes. We investigated the transcriptional regulation of Aicda (which encodes AID) in class switch-inducible CH12F3-2 cells and found that Aicda regulation involved derepression by several layers of positive regulatory elements in addition to the 5' promoter region. The 5' upstream region contained functional motifs for the response to signaling by cytokines, the ligand for the costimulatory molecule CD40 or stimuli that activated the transcription factor NF-kappaB. The first intron contained functional binding elements for the ubiquitous silencers c-Myb and E2f and for the B cell-specific activator Pax5 and E-box-binding proteins. Our results show that Aicda is regulated by the balance between B cell-specific and stimulation-responsive elements and ubiquitous silencers.


Assuntos
Linfócitos B/imunologia , Citidina Desaminase/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/imunologia , Genes de Imunoglobulinas/genética , Elementos Silenciadores Transcricionais/genética , Animais , Citidina Desaminase/imunologia , Elementos Facilitadores Genéticos/imunologia , Expressão Gênica , Perfilação da Expressão Gênica , Genes de Imunoglobulinas/imunologia , Humanos , Switching de Imunoglobulina/genética , Switching de Imunoglobulina/imunologia , Memória Imunológica/genética , Memória Imunológica/imunologia , Camundongos , Mutagênese Sítio-Dirigida , Análise de Sequência com Séries de Oligonucleotídeos , Oncogenes/genética , Oncogenes/imunologia , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Elementos Silenciadores Transcricionais/imunologia , Hipermutação Somática de Imunoglobulina/genética , Hipermutação Somática de Imunoglobulina/imunologia
5.
Int Immunol ; 33(12): 787-790, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34492105

RESUMO

Dysbiosis is alterations in the microbial composition compared with a healthy microbiota and often features a reduction in gut microbial diversity and a change in microbial taxa. Dysbiosis, especially in the gut, has also been proposed to play a crucial role in the pathogenesis of a wide variety of diseases, including inflammatory bowel disease, colorectal cancer, cardiovascular disease, obesity, diabetes and multiple sclerosis. A body of evidence has shown that intestinal polymeric immunoglobulin A (IgA) antibodies are important to regulate the gut microbiota as well as to exclude pathogenic bacteria or viral infection such as influenza and SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) at mucosal sites. Since the 1970s, trials for oral administration of therapeutic IgA or IgG have been performed mainly to treat infectious enteritis caused by pathogenic Escherichia coli or Clostridium difficile. However, few of them have been successfully developed for clinical application up to now. In addition to the protective function against intestinal pathogens, IgA is well known to modulate the gut commensal microbiota leading to symbiosis. Nevertheless, the development of therapeutic IgA drugs to treat dysbiosis is not progressing. In this review, the advantages of therapeutic IgA antibodies and the problems for their development will be discussed.


Assuntos
Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Imunoglobulina A/uso terapêutico , Agentes de Imunomodulação/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Intestinos/efeitos dos fármacos , Animais , Bactérias/imunologia , Disbiose , Interações Hospedeiro-Patógeno , Humanos , Imunoglobulina A/efeitos adversos , Agentes de Imunomodulação/efeitos adversos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Intestinos/imunologia , Intestinos/microbiologia , Especificidade da Espécie
6.
Digestion ; 103(4): 269-286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35184054

RESUMO

INTRODUCTION: Gut microbiota alterations cause inflammation in patients with ulcerative colitis (UC). Fecal microbiota transplantation (FMT) enables manipulating the microbiota's composition, but the mechanisms underlying colonization of the posttransplantation microbiota are poorly understood. METHODS: In this open-label, nonrandomized study, the FMT efficacy and changes in the gut microbiota were evaluated in 8 UC patients with mild-to-moderately active endoscopic colonic lesions. Compositional changes in the fecal and mucosal microbiotas between donors and recipients were examined via 16S rRNA-based sequencing. To investigate the effects of oral corticosteroids on microbiota colonization, FMT was performed in germ-free prednisolone (PSL)-administered mice to examine the factors determining colonization. RESULTS: Four UC patients achieved clinical remission (CR) after FMT, and 3 also achieved endoscopic remission. The fecal microbiotas of the CR patients changed similar to those of the donors after FMT. The mucin-coding gene, MUC2, was less expressed in the colons of the PSL-dependent patients than in the PSL-free patients. In the mice, PSL treatment decreased the fecal mucin production and altered the posttransplantation fecal microbiota composition. Adding either exogenous mucin or the mucin secretagogue, rebamipide, partially alleviated the PSL-induced dysbiosis of the gut microbiota. Administering rebamipide with FMT from healthy donors relieved inflammation in mice with Enterococcus faecium-induced colitis. CONCLUSION: Colonic mucin controlled the gut microbiota composition, and oral corticosteroid treatment modified the gut microbiota partly by reducing the colonic mucin.


Assuntos
Colite Ulcerativa , Microbiota , Corticosteroides , Animais , Colite Ulcerativa/terapia , Fezes , Inflamação , Camundongos , Mucinas , RNA Ribossômico 16S/genética , Resultado do Tratamento
7.
Proc Natl Acad Sci U S A ; 116(27): 13480-13489, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31127044

RESUMO

IgA is the most abundantly produced antibody in the body and plays a crucial role in gut homeostasis and mucosal immunity. IgA forms a dimer that covalently associates with the joining (J) chain, which is essential for IgA transport into the mucosa. Here, we demonstrate that the marginal zone B and B-1 cell-specific protein (MZB1) interacts with IgA through the α-heavy-chain tailpiece dependent on the penultimate cysteine residue and prevents the intracellular degradation of α-light-chain complexes. Moreover, MZB1 promotes J-chain binding to IgA and the secretion of dimeric IgA. MZB1-deficient mice are impaired in secreting large amounts of IgA into the gut in response to acute inflammation and develop severe colitis. Oral administration of a monoclonal IgA significantly ameliorated the colitis, accompanied by normalization of the gut microbiota composition. The present study identifies a molecular chaperone that promotes J-chain binding to IgA and reveals an important mechanism that controls the quantity, quality, and function of IgA.


Assuntos
Colite/metabolismo , Imunoglobulina A Secretora/metabolismo , Cadeias J de Imunoglobulina/metabolismo , Chaperonas Moleculares/fisiologia , Animais , Colite/induzido quimicamente , Colite/imunologia , Sulfato de Dextrana/farmacologia , Feminino , Microbioma Gastrointestinal , Imunoglobulina G/metabolismo , Imunoglobulina M/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Proc Natl Acad Sci U S A ; 108(19): 7920-5, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518874

RESUMO

Activation-induced cytidine deaminase (AID) is shown to be essential and sufficient to induce two genetic alterations in the Ig loci: class switch recombination (CSR) and somatic hypermutation (SHM). However, it is still unknown how a single-molecule AID differentially regulates CSR and SHM. Here we identified Spt6 as an AID-interacting protein by yeast two-hybrid screening and immunoprecipitation followed by mass spectrometry. Knockdown of Spt6 resulted in severe reduction of CSR in both the endogenous Ig locus in B cells and an artificial substrate in fibroblast cells. Conversely, knockdown of Spt6 did not reduce but slightly enhanced SHM in an artificial substrate in B cells, indicating that Spt6 is required for AID to induce CSR but not SHM. These results suggest that Spt6 is involved in differential regulation of CSR and SHM by AID.


Assuntos
Switching de Imunoglobulina , Hipermutação Somática de Imunoglobulina , Fatores de Transcrição/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sequência de Bases , Linhagem Celular , Citidina Desaminase/química , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Primers do DNA/genética , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Camundongos , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
10.
J Gastroenterol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874761

RESUMO

BACKGROUND: The imbalance of commensal bacteria is called dysbiosis in intestinal microflora. Secreted IgA in the intestinal lumen plays an important role in the regulation of microbiota. Although dysbiosis of gut bacteria is reported in IBD patients, it remains unclear what makes dysbiosis of their microflora. The intervention method for remedy of dysbiosis in IBD patients is not well established. In this study, we focused on the quality of human endogenous IgA and investigated whether mouse monoclonal IgA which binds to selectively colitogenic bacteria can modulate human gut microbiota with IBD patients. METHODS: IgA-bound and -unbound bacteria were sorted by MACS and cell sorter. Sorted bacteria were analyzed by 16S rRNA sequencing to investigate what kinds of bacteria endogenous IgA or mouse IgA recognized in human gut microbiota. To evaluate the effect of mouse IgA, gnotobiotic mice with IBD patient microbiota were orally administrated with mouse IgA and analyzed gut microbiota. RESULTS: We show that human endogenous IgA has abnormal binding activity to gut bacteria in IBD patients. Mouse IgA can bind to human microbiota and bind to selectively colitogenic bacteria. The rW27, especially, has a growth inhibitory activity to human colitogenic bacteria. Furthermore, oral administration of mouse IgA reduced an inflammation biomarker, fecal lipocalin 2, in mice colonized with IBD patient-derived microbiota, and improved dysbiosis of IBD patient sample. CONCLUSION: Oral treatment of mouse IgA can treat gut dysbiosis in IBD patients by modulating gut microbiota.

11.
Mucosal Immunol ; 17(3): 450-460, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38101774

RESUMO

Colorectal cancer (CRC) ranks among the top causes of mortality globally. Gut inflammation is one crucial risk factor that augments CRC development since patients suffering from inflammatory bowel disease have an increased incidence of CRC. The role of immunoglobulin (Ig)A in maintaining gut homeostasis and preventing inflammation has been well established. Our earlier work demonstrated that the marginal zone and B1 cell-specific protein (MZB1) promotes gut IgA secretion and its absence results in pronounced dextran sulfate sodium salt (DSS)-induced colitis. In the present study, we explored the role of MZB1 in CRC development using the azoxymethane (AOM)/DSS-induced CRC model. We observed an increase in both the number and size of the tumor nodules in Mzb1-/- mice compared with Mzb1+/+ mice. The increase in CRC development and progression in Mzb1-/- mice was associated with reduced intestinal IgA levels, altered gut flora, and more severe gut and systemic inflammation. Oral administration of the monoclonal IgA, W27, alleviated both the gut inflammation and AOM/DSS-induced CRC. Notably, cohousing Mzb1+/+ and Mzb1-/- mice from the 10th day after birth led to similar CRC development. Our findings underscore the pivotal role of MZB1-mediated IgA secretion in suppressing the onset and progression of CRC triggered by gut inflammation. Moreover, our study highlights the profound impact of microbiota composition, modulated by gut IgA levels, on gut inflammation. Nonetheless, establishing a direct correlation between the severity of colitis and subsequent CRC development and the presence or absence of a particular microbiota is challenging.


Assuntos
Azoximetano , Colite , Neoplasias Colorretais , Sulfato de Dextrana , Modelos Animais de Doenças , Progressão da Doença , Microbioma Gastrointestinal , Camundongos Knockout , Animais , Humanos , Camundongos , Colite/induzido quimicamente , Colite/imunologia , Colite/metabolismo , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Imunoglobulina A/metabolismo , Imunoglobulina A/imunologia , Inflamação/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL
12.
Proc Natl Acad Sci U S A ; 106(8): 2758-63, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19202055

RESUMO

Activation-induced cytidine deaminase (AID) is an essential factor for the class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. CSR and SHM are initiated by AID-induced DNA breaks in the S and V regions, respectively. Because truncation or frame-shift mutations at the carboxyl (C)-terminus of AID abolishes CSR but not SHM, the C-terminal region of AID likely is required for the targeting of DNA breaks in the S region. To test this hypothesis, we determined the precise location and relative amounts of AID-induced DNA cleavage using an in situ DNA end-labeling method. We established CH12F3-2 cell transfectants expressing the estrogen receptor (ER) fused with wild-type (WT) AID or a deletion mutant lacking the C-terminal 16 aa, JP8Bdel. We found that AID-ER, but not JP8Bdel-ER, caused a CSR to IgA from the addition of 4-hydroxy tamoxifen. In contrast, both WT AID and JP8Bdel induced DNA breaks in both the V and S regions. In addition, JP8Bdel enhanced c-myc/IgH translocations. Our findings indicate that the C-terminal domain of AID is not required for S-region DNA breaks but is required for S-region recombination after DNA cleavage. Therefore, AID does not distinguish between the V and S regions for cleavage, but carries another function specific to CSR.


Assuntos
Citidina Desaminase/metabolismo , DNA/metabolismo , Switching de Imunoglobulina , Recombinação Genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Citidina Desaminase/química , Dano ao DNA , Vetores Genéticos , Humanos , Imunoglobulina M/metabolismo , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Mutação Puntual , Reação em Cadeia da Polimerase , Homologia de Sequência de Aminoácidos
13.
Proc Natl Acad Sci U S A ; 106(52): 22375-80, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20018730

RESUMO

To initiate class switch recombination (CSR) activation-induced cytidine deaminase (AID) induces staggered nick cleavage in the S region, which lies 5' to each Ig constant region gene and is rich in palindromic sequences. Topoisomerase 1 (Top1) controls the supercoiling of DNA by nicking, rotating, and religating one strand of DNA. Curiously, Top1 reduction or AID overexpression causes the genomic instability. Here, we report that the inactivation of Top1 by its specific inhibitor camptothecin drastically blocked both the S region cleavage and CSR, indicating that Top1 is responsible for the S region cleavage in CSR. Surprisingly, AID expression suppressed Top1 mRNA translation and reduced its protein level. In addition, the decrease in the Top1 protein by RNA-mediated knockdown augmented the AID-dependent S region cleavage, as well as CSR. Furthermore, Top1 reduction altered DNA structure of the Smu region. Taken together, AID-induced Top1 reduction alters S region DNA structure probably to non-B form, on which Top1 can introduce nicks but cannot religate, resulting in S region cleavage.


Assuntos
Citidina Desaminase/metabolismo , DNA Topoisomerases Tipo I/metabolismo , DNA/química , DNA/metabolismo , Switching de Imunoglobulina , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Camptotecina/farmacologia , Linhagem Celular , Citidina Desaminase/deficiência , Citidina Desaminase/genética , DNA/genética , DNA Topoisomerases Tipo I/genética , Switching de Imunoglobulina/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Inibidores da Topoisomerase I
14.
Proc Natl Acad Sci U S A ; 105(41): 15866-71, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18832469

RESUMO

Activation-induced cytidine deaminase (AID) is essential for the DNA cleavage that initiates both somatic hypermutation (SHM) and class switch recombination (CSR) of the Ig gene. Two alternative mechanisms of DNA cleavage by AID have been proposed: RNA editing and DNA deamination. In support of the latter, AID has DNA deamination activity in cell-free systems that is assumed to represent its physiological function. To test this hypothesis, we generated various mouse AID mutants and compared their DNA deamination, CSR, and SHM activities. Here, we compared DNA deamination, CSR, and SHM activities of various AID mutants and found that most of their CSR or SHM activities were disproportionate with their DNA deamination activities. Specifically, we identified a cluster of mutants (H48A, L49A, R50A, and N51A) with low DNA deamination activity but relatively intact CSR activity. Of note is an AID mutant (N51A) that retained CSR function but lost DNA deamination activity. In addition, an APOBEC1 mutation at N57, homologous to N51 of AID, also abolished DNA deamination activity but retained RNA editing activity. These results indicate that DNA deamination activity does not represent the physiological function of AID.


Assuntos
Citidina Desaminase/metabolismo , Citidina Desaminase/fisiologia , Clivagem do DNA , Desaminase APOBEC-1 , Animais , Citidina Desaminase/genética , Desaminação , Switching de Imunoglobulina , Camundongos , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiologia , Mutação de Sentido Incorreto , Hipermutação Somática de Imunoglobulina
15.
Sci Rep ; 11(1): 14627, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272464

RESUMO

W27 monoclonal immunoglobulin A (IgA) suppresses pathogenic Escherichia coli cell growth; however, its effect on the human intestine remains unclear. We aimed to determine how W27 IgA affects the human colonic microbiota using the in vitro microbiota model. This model was established using fecal samples collected from 12 healthy volunteers; after anaerobic cultivation, each model was found to retain the genera found in the original human fecal samples. After pre-incubating W27 IgA with the respective fecal sample under aerobic conditions, the mixture of W27 IgA (final concentration, 0.5 µg/mL) and each fecal sample was added to the in vitro microbiota model and cultured under anaerobic conditions. Next-generation sequencing of the bacterial 16S rRNA gene revealed that W27 IgA significantly decreased the relative abundance of bacteria related to the genus Escherichia in the model. Additionally, at a final concentration of 5 µg/mL, W27 IgA delayed growth in the pure culture of Escherichia coli isolated from human fecal samples. Our study thus revealed the suppressive effect of W27 IgA on the genus Escherichia at relatively low-concentrations and the usefulness of an in vitro microbiota model to evaluate the effect of IgA as a gut microbiota regulator.


Assuntos
Escherichia coli/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Imunoglobulina A/farmacologia , Adulto , Anticorpos Monoclonais/farmacologia , Biodiversidade , DNA Bacteriano , Escherichia coli/genética , Fezes/microbiologia , Voluntários Saudáveis , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Técnicas In Vitro , Pessoa de Meia-Idade , Modelos Biológicos , RNA Ribossômico 16S , Adulto Jovem
16.
Int Immunol ; 21(8): 947-55, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19556307

RESUMO

The DNA cleavage step in both the class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes is initiated by activation-induced cytidine deaminase (AID). However, the detailed mechanisms of the DNA strand cleavage in SHM and CSR are still largely unknown. Recently, the apurinic/apyrimidinic endonucleases, Apex1 and Apex2, were reported to be involved in the DNA cleavage step of CSR. Here, we examined the role of Apex2 in SHM using Apex2-deficient mice and found that the Apex2 deficiency caused a drastic reduction in the frequency of SHM and the number of mutations per mutated clone without affecting the pattern of base substitution. These results suggest that Apex2 may play a critical role in SHM through its 3'-5' exonuclease activity. Unexpectedly, the efficiency of CSR was not reduced in Apex2-deficient B cells. In addition, Apex1 knockdown in CH12F3-2 B lymphoma cells did not affect the CSR frequency, suggesting that neither Apex1 nor Apex2 plays a major role in CSR.


Assuntos
Endonucleases/fisiologia , Genes de Imunoglobulinas , Switching de Imunoglobulina , Hipermutação Somática de Imunoglobulina/genética , Animais , Linfócitos B/enzimologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Endonucleases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Enzimas Multifuncionais , Recombinação Genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-32514366

RESUMO

BACKGROUND: Monoclonal antibodies (mAbs) as biopharmaceuticals take a pivotal role in the current therapeutic applications. Generally mammalian cell lines, such as those derived from Chinese hamster ovaries (CHO), are used to produce the recombinant antibody. However, there are still concerns about the high cost and the risk of pathogenic contamination when using mammalian cells. Aspergillus oryzae, a filamentous fungus recognized as a GRAS (Generally Regarded As Safe) organism, has an ability to secrete a large amount of proteins into the culture supernatant, and thus the fungus has been used as one of the cost-effective microbial hosts for heterologous protein production. Pursuing this strategy the human anti-TNFα antibody adalimumab, one of the world's best-selling antibodies for the treatment of immune-mediated inflammatory diseases including rheumatoid arthritis, was chosen to produce the full length of mAbs by A. oryzae. Generally, N-glycosylation of the antibody affects immune effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) via binding to the Fc receptor (FcγR) on immune cells. The CRISPR/Cas9 system was used to first delete the Aooch1 gene encoding a key enzyme for the hyper-mannosylation process in fungi to investigate the binding ability of antibody with FcγRIIIa. RESULTS: Adalimumab was expressed in A. oryzae by the fusion protein system with α-amylase AmyB. The full-length adalimumab consisting of two heavy and two light chains was successfully produced in the culture supernatants. Among the producing strains, the highest amount of antibody was obtained from the ten-protease deletion strain (39.7 mg/L). Two-step purifications by Protein A and size-exclusion chromatography were applied to obtain the high purity sample for further analysis. The antigen-binding and TNFα neutralizing activities of the adalimumab produced by A. oryzae were comparable with those of a commercial product Humira®. No apparent binding with the FcγRIIIa was detected with the recombinant adalimumab even by altering the N-glycan structure using the Aooch1 deletion strain, which suggests only a little additional activity of immune effector functions. CONCLUSION: These results demonstrated an alternative low-cost platform for human antibody production by using A. oryzae, possibly offering a reasonable expenditure for patient's welfare.

18.
Adv Immunol ; 94: 1-36, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17560270

RESUMO

Discovery of activation-induced cytidine deaminase (AID) paved a new path to unite two genetic alterations induced by antigen stimulation; class switch recombination (CSR) and somatic hypermutation (SHM). AID is now established to cleave specific target DNA and to serve as engraver of these genetic alterations. AID of a 198-residue protein has four important domains: nuclear localization signal and SHM-specific region at the N-terminus; the alpha-helical segment (residue 47-54) responsible for dimerization; catalytic domain (residues 56-94) shared by all the other cytidine deaminase family members; and nuclear export signal overlapping with class switch-specific domain at the C-terminus. Two alternative models have been proposed for the mode of AID action; whether AID directly attacks DNA or indirectly through RNA editing. Lines of evidence supporting RNA editing hypothesis include homology in various aspects with APOBEC1, a bona fide RNA editing enzyme as well as requirement of de novo protein synthesis for DNA cleavage by AID in CSR and SHM. This chapter critically evaluates DNA deamination hypothesis and describes evidence to indicate UNG is involved not in DNA cleavage but in DNA repair of CSR. In addition, UNG appears to have a noncanonical function through interaction with an HIV Vpr-like protein at the WXXF motif. Taken together, RNA editing hypothesis is gaining the ground.


Assuntos
Anticorpos/imunologia , Citidina Desaminase , Switching de Imunoglobulina/genética , Memória Imunológica/genética , Modelos Imunológicos , Hipermutação Somática de Imunoglobulina/genética , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Clivagem do DNA , Humanos , Ativação Linfocitária/imunologia , Edição de RNA , Uracila-DNA Glicosidase/imunologia , Uracila-DNA Glicosidase/metabolismo
20.
Mol Cell Biol ; 24(3): 1200-5, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14729965

RESUMO

Xeroderma pigmentosum (XP) is a human genetic disease which is caused by defects in nucleotide excision repair. Since this repair pathway is responsible for removing UV irradiation-induced damage to DNA, XP patients are hypersensitive to sunlight and are prone to develop skin cancer. Based on the underlying genetic defect, the disease can be divided into the seven complementation groups XPA through XPG. XPF, in association with ERCC1, constitutes a structure-specific endonuclease that makes an incision 5' to the photodamage. XPF-ERCC1 has also been implicated in both removal of interstrand DNA cross-links and homology-mediated recombination and in immunoglobulin class switch recombination (CSR). To study the function of XPF in vivo, we inactivated the XPF gene in mice. XPF-deficient mice showed a severe postnatal growth defect and died approximately 3 weeks after birth. Histological examination revealed that the liver of mutant animals contained abnormal cells with enlarged nuclei. Furthermore, embryonic fibroblasts defective in XPF are hypersensitive to UV irradiation and mitomycin C treatment. No defect in CSR was detected, suggesting that the nuclease is dispensable for this recombination process. These phenotypes are identical to those exhibited by the ERCC1-deficient mice, consistent with the functional association of the two proteins. The complex phenotype suggests that XPF-ERCC1 is involved in multiple DNA repair processes.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/deficiência , Genes Letais , Camundongos/crescimento & desenvolvimento , Animais , Reagentes de Ligações Cruzadas/farmacologia , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Switching de Imunoglobulina/genética , Switching de Imunoglobulina/fisiologia , Mitomicina/farmacologia , Mutação Puntual , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA