Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Genes Cells ; 24(1): 94-106, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30417519

RESUMO

Proteins in the nuclear envelope (NE) play a role in the dynamics and functions of the nucleus and of chromosomes during mitosis and meiosis. Mps3, a yeast NE protein with a conserved SUN domain, predominantly localizes on a yeast centrosome equivalent, spindle pole body (SPB), in mitotic cells. During meiosis, Mps3, together with SPB, forms a distinct multiple ensemble on NE. How meiosis-specific NE localization of Mps3 is regulated remains largely unknown. In this study, we found that a meiosis-specific component of the protein complex essential for sister chromatid cohesion, Rec8, binds to Mps3 during meiosis and controls Mps3 localization and proper dynamics on NE. Ectopic expression of Rec8 in mitotic yeast cells induced the formation of Mps3 patches/foci on NE. This required the cohesin regulator, WAPL ortholog, Rad61/Wpl1, suggesting that a meiosis-specific cohesin complex with Rec8 controls NE localization of Mps3. We also observed that two domains of the nucleoplasmic region of Mps3 are essential for NE localization of Mps3 in mitotic as well as meiotic cells. We speculate that the interaction of Mps3 with the meiosis-specific cohesin in the nucleoplasm is a key determinant for NE localization/function of Mps3.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Meiose , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Membrana Nuclear/metabolismo , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Coesinas
2.
EMBO Rep ; 17(1): 37-46, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26589352

RESUMO

RNA-binding proteins (RBPs) play important roles for generating various cell types in many developmental processes, including eggs and sperms. Nanos is widely known as an evolutionarily conserved RNA-binding protein implicated in germ cell development. Mouse NANOS2 interacts directly with the CCR4-NOT (CNOT) deadenylase complex, resulting in the suppression of specific RNAs. However, the mechanisms involved in target specificity remain elusive. We show that another RBP, Dead end1 (DND1), directly interacts with NANOS2 to load unique RNAs into the CNOT complex. This interaction is mediated by the zinc finger domain of NANOS2, which is essential for its association with target RNAs. In addition, the conditional deletion of DND1 causes the disruption of male germ cell differentiation similar to that observed in Nanos2-KO mice. Thus, DND1 is an essential partner for NANOS2 that leads to the degradation of specific RNAs. We also present the first evidence that the zinc finger domain of Nanos acts as a protein-interacting domain for another RBP, providing a novel insight into Nanos-mediated germ cell development.


Assuntos
Diferenciação Celular , Células Germinativas Embrionárias/fisiologia , Proteínas de Neoplasias/genética , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Animais , Proteínas de Transporte/metabolismo , Células Germinativas Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos Knockout , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Espermatozoides/fisiologia , Dedos de Zinco/fisiologia
3.
Genes Cells ; 21(10): 1125-1136, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27647735

RESUMO

In eukaryotic cells, there are two chromatin states, silenced and active, and the formation of a so-called boundary plays a critical role in demarcating these regions; however, the mechanisms underlying boundary formation are not well understood. In this study, we focused on S. cerevisiae ADA1, a gene previously shown to encode a protein with a robust boundary function. Ada1 is a component of the histone modification complex Spt-Ada-Gcn5-acetyltransferase (SAGA) and the SAGA-like (SLIK) complex, and it helps to maintain the integrity of these complexes. Domain analysis showed that four relatively small regions of Ada1 (Region I; 66-75 aa, II; 232-282 aa, III; 416-436 aa and IV; 476-488 aa) have a boundary function. Among these, Region II could form an intact SAGA complex, whereas the other regions could not. Investigation of cellular factors that interact with these small regions identified a number of proteasome-associated proteins. Interestingly, the boundary functions of Region II and Region III were affected by depletion of Ump1, a maturation and assembly factor of the 20S proteasome. These results suggest that the boundary function of Ada1 is functionally linked to proteasome processes and that the four relatively small regions in ADA1 form a boundary via different mechanisms.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/química , Regulação Fúngica da Expressão Gênica , Dobramento de Proteína , Proteoma , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Relação Estrutura-Atividade , Transativadores/fisiologia
4.
Genes Dev ; 23(1): 18-23, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19136623

RESUMO

Heterochromatin protein 1 (HP1) recruits various effectors to heterochromatin for multiple functions, but its regulation is unclear. In fission yeast, a HP1 homolog Swi6 recruits SHREC, Epe1, and cohesin, which are involved in transcriptional gene silencing (TGS), transcriptional activation, and sister chromatid cohesion, respectively. We found that casein kinase II (CK2) phosphorylated Swi6. Loss of CK2-dependent Swi6 phosphorylation alleviated heterochromatic TGS without affecting heterochromatin structure. This was due to the inhibited recruitment of SHREC to heterochromatin, accompanied by an increase in Epe1. Interestingly, loss of phosphorylation did not affect cohesion. These results indicate that CK2-dependent Swi6 phosphorylation specifically controls TGS in heterochromatin.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Regulação Fúngica da Expressão Gênica , Inativação Gênica/fisiologia , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Fosforilação , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
5.
Nucleic Acids Res ; 42(6): 3998-4007, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24413662

RESUMO

The assembly of spliceosomal U snRNPs in metazoans requires nuclear export of U snRNA precursors. Four factors, nuclear cap-binding complex (CBC), phosphorylated adaptor for RNA export (PHAX), the export receptor CRM1 and RanGTP, gather at the m(7)G-cap-proximal region and form the U snRNA export complex. Here we show that the multifunctional RNA-binding proteins p54nrb/NonO and PSF are U snRNA export stimulatory factors. These proteins, likely as a heterodimer, accelerate the recruitment of PHAX, and subsequently CRM1 and Ran onto the RNA substrates in vitro, which mediates efficient U snRNA export in vivo. Our results reveal a new layer of regulation for U snRNA export and, hence, spliceosomal U snRNP biogenesis.


Assuntos
Núcleo Celular/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fatores de Transcrição de Octâmero/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Citoplasma/metabolismo , Proteínas de Ligação a DNA , Células HeLa , Humanos , Carioferinas/metabolismo , Fator de Processamento Associado a PTB , Fosfoproteínas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Xenopus , Proteína ran de Ligação ao GTP/metabolismo , Proteína Exportina 1
6.
Genes Cells ; 18(9): 823-37, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23819448

RESUMO

The budding yeast Saccharomyces cerevisiae contains active and inactive chromatin separated by boundary domains. Previously, we used genome-wide screening to identify 55 boundary-related genes. Here, we focus on Sgf73, a boundary protein that is a component of the Spt-Ada-Gcn5 acetyltransferase (SAGA) and SLIK (SAGA-like) complexes. These complexes have histone acetyltransferase (HAT) and histone deubiquitinase activity, and Sgf73 is one of the factors necessary to anchor the deubiquitination module. Domain analysis of Sgf73 was carried out, and the minimum region (373-402 aa) essential for boundary function was identified. This minimum region does not include the domain involved in anchoring the deubiquitination module, suggesting that the histone deubiquitinase activity of Sgf73 is not important for its boundary function. Next, Sgf73-mediated boundary function was analyzed in disruption strains in which different protein subunits of the SAGA/SLIK/ADA complexes were deleted. Deletion of ada2, ada3 or gcn5 (a HAT module component) caused complete loss of the boundary function of Sgf73. The importance of SAGA or SLIK complex binding to the boundary function of Sgf73 was also analyzed. Western blot analysis detected both the full-length and truncated forms of Spt7, suggesting that SAGA and SLIK complex formation is important for the boundary function of Sgf73.


Assuntos
Heterocromatina/metabolismo , Histona Acetiltransferases/metabolismo , Elementos Isolantes , Saccharomyces cerevisiae/metabolismo , Deleção de Genes , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
J Biol Chem ; 286(17): 15391-402, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21385875

RESUMO

Grc3 is an evolutionarily conserved protein. Genome-wide budding yeast studies suggest that Grc3 is involved in rRNA processing. In the fission yeast Schizosaccharomyces pombe, Grc3 was identified as a factor exhibiting distinct nuclear dot localization, yet its exact physiological function remains unknown. Here, we show that S. pombe Grc3 is required for both rRNA processing and heterochromatic gene silencing. Cytological analysis revealed that Grc3 nuclear dots correspond to heterochromatic regions and that some Grc3 is also present in the nucleolar peripheral region. Depleting the heterochromatic proteins Swi6 or Clr4 abolished heterochromatic localization of Grc3 and resulted in its preferential accumulation in the perinucleolar region, suggesting its dynamic association with these nuclear compartments. Cells expressing mutant grc3 showed defects in 25 S rRNA maturation and in heterochromatic gene silencing. Protein analysis of Grc3-containing complexes led to the identification of Las1 and components of the IPI complex (Rix1, Ipi1, and Crb3). All of these Grc3-interacting proteins showed a dynamic nuclear localization similar to that observed for Grc3, and those conditional mutants showed defects in both rRNA processing and silencing of centromeric transcripts. Our data suggest that Grc3 functions cooperatively with Las1 and the IPI complex in both ribosome biogenesis and heterochromatin assembly.


Assuntos
Inativação Gênica , Heterocromatina , Proteínas Nucleares/fisiologia , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Nucléolo Celular/metabolismo , Genes Fúngicos , Proteínas Mutantes/genética , Proteínas Nucleares/genética , Proteínas de Schizosaccharomyces pombe/genética
8.
J Cell Sci ; 123(Pt 7): 1124-30, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20332121

RESUMO

PALB2 physically and functionally connects the proteins encoded by the BRCA1 and BRCA2 breast and ovarian cancer genes into a DNA-damage-response network. However, it remains unclear how these proteins associate with chromatin that contains damaged DNA. We show here that PALB2 binds directly to a conserved chromodomain protein, MRG15, which is a component of histone acetyltransferase-deacetylase complexes. This interaction was identified by analysis of purified MRG15- and PALB2-containing protein complexes. Furthermore, MRG15 interacts with the entire BRCA complex, which contains BRCA1, PALB2, BRCA2 and RAD51. Interestingly, MRG15-deficient cells, similarly to cells deficient in PALB2 or BRCA2, showed reduced efficiency for homology-directed DNA repair and hypersensitivity to DNA interstrand crosslinking agents. Additionally, knockdown of MRG15 diminished the recruitment of PALB2, BRCA2 and RAD51 to sites of DNA damage and reduced chromatin loading of PALB2 and BRCA2. These results suggest that MRG15 mediates DNA-damage-response functions of the BRCA complex in chromatin.


Assuntos
Neoplasias da Mama/genética , Reparo do DNA , DNA , Células Epiteliais/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Cromatina/metabolismo , Quebra Cromossômica , Ensaio Cometa , Reagentes de Ligações Cruzadas/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Proteína do Grupo de Complementação N da Anemia de Fanconi , Feminino , Genes BRCA1 , Predisposição Genética para Doença , Células HeLa , Humanos , Mitomicina/farmacologia , Proteínas Nucleares/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Ligação Proteica , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
9.
J Biol Chem ; 285(29): 22448-60, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20444689

RESUMO

Lysine methylation is one of the most common protein modifications. Although lysine methylation of histones has been extensively studied and linked to gene regulation, that of non-histone proteins remains incompletely understood. Here, we show a novel regulatory role of ribosomal protein methylation. Using an in vitro methyltransferase assay, we found that Schizosaccharomyces pombe Set13, a SET domain protein encoded by SPAC688.14, specifically methylates lysine 55 of ribosomal protein L42 (Rpl42). Mass spectrometric analysis revealed that endogenous Rpl42 is monomethylated at lysine 55 in wild-type S. pombe cells and that the methylation is lost in Delta set13 mutant cells. Delta set13 and Rpl42 methylation-deficient mutant S. pombe cells showed higher cycloheximide sensitivity and defects in stress-responsive growth control compared with wild type. Genetic analyses suggested that the abnormal growth phenotype was distinct from the conserved stress-responsive pathway that modulates translation initiation. Furthermore, the Rpl42 methylation-deficient mutant cells showed a reduced ability to survive after entering stationary phase. These results suggest that Rpl42 methylation plays direct roles in ribosomal function and cell proliferation control independently of the general stress-response pathway.


Assuntos
Adaptação Fisiológica , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/metabolismo , Estresse Fisiológico , Adaptação Fisiológica/efeitos dos fármacos , Sequência de Aminoácidos , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida , Temperatura Baixa , Sequência Conservada , Cicloeximida/toxicidade , Humanos , Lisina/metabolismo , Espectrometria de Massas , Metilação/efeitos dos fármacos , Metiltransferases/metabolismo , Dados de Sequência Molecular , Mutação/genética , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/efeitos dos fármacos , Schizosaccharomyces/citologia , Schizosaccharomyces/efeitos dos fármacos , Proteínas de Schizosaccharomyces pombe/química , Estresse Fisiológico/efeitos dos fármacos , Fatores de Tempo
10.
Alzheimers Dement (N Y) ; 7(1): e12182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095441

RESUMO

INTRODUCTION: Cilostazol may be a novel therapeutic agent for Alzheimer's disease. Its metabolite, OPC-13015, has a stronger inhibitory effect on type 3 phosphodiesterase than cilostazol. METHODS: We prospectively enrolled patients with mild cognitive impairment to whom cilostazol was newly prescribed. Patients underwent the Montreal Cognitive Assessment (MoCA) twice, at a 6-month interval. Plasma cilostazol, OPC-13015, OPC-13213, and OPC-13217 concentrations were determined using liquid chromatography-tandem mass spectrometry. RESULTS: MoCA score changes from baseline to the 6-month visit were positively correlated with ratios of OPC-13015 to cilostazol and total metabolites (n = 19, P = .005). Patients with higher ratios of OPC-13015 (≥0.18, median value; n = 10) had significantly higher MoCA scores (P = .036) than patients with lower ratios (the ratio <0.18, n = 9). The absolute value of OPC-13015 concentration in blood was also higher in patients with preserved cognitive function (P = .033). DISCUSSION: Blood OPC-13015 levels may be a predictive biomarker of cilostazol treatment for Alzheimer's disease.

11.
Dev Genes Evol ; 219(7): 353-60, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19609557

RESUMO

How alpha and beta globin genes are organized and expressed in amniotes is of interest to researchers in a wide variety of fields. Data regarding this from avian species have been scarce. Using genomic and proteomic approaches, we present here our analysis of alpha and beta globins of zebra finch, a passerine bird. We show that finch alpha globin gene cluster has three genes (alphas 1-3), each orthologous to its chicken counterpart. Finch beta globin gene cluster has three genes (betas 1-3), with an additional pseudogene at the 3' end. Finch beta3 is orthologous to chicken betaA, but the orthology of beta1 and beta2 to chicken counterparts is less clear. All six finch globins are confirmed to encode functional proteins. Gene expression in both globin gene clusters is regulated developmentally. Adult finch blood has a globin profile similar to that of adult chicken, with high levels of beta3 and alpha3 and moderate levels of alpha2. Finch embryonic primitive blood exhibits a globin profile very different from that of equivalent stage chick embryos, with all six globins expressed at high levels. Overall, our data provide a valuable resource for future studies in avian globin gene evolution and globin switching during erythropoietic development.


Assuntos
Proteínas Aviárias/genética , Galinhas/genética , Tentilhões/genética , Regulação da Expressão Gênica no Desenvolvimento , alfa-Globinas/genética , Globinas beta/genética , Envelhecimento/fisiologia , Sequência de Aminoácidos , Animais , Proteínas Aviárias/química , Proteínas Aviárias/metabolismo , Embrião não Mamífero/metabolismo , Eritropoese , Tentilhões/crescimento & desenvolvimento , Genoma , Dados de Sequência Molecular , Família Multigênica , Filogenia , Alinhamento de Sequência , alfa-Globinas/química , alfa-Globinas/metabolismo , Globinas beta/química , Globinas beta/metabolismo
12.
Plant Cell Physiol ; 50(6): 1049-61, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19376783

RESUMO

Recent studies have revealed various functions for the small ubiquitin-related modifier (SUMO) in diverse biological phenomena, such as regulation of cell division, DNA repair and transcription, in yeast and animals. In contrast, only a limited number of proteins have been characterized in plants, although plant SUMO proteins are involved in many physiological processes, such as stress responses, regulation of flowering time and defense reactions to pathogen attack. Here, we reconstituted the Arabidopsis thaliana SUMOylation cascade in Escherichia coli. This system is rapid and effective for the evaluation of the SUMOylation of potential SUMO target proteins. We tested the ability of this system to conjugate the Arabidopsis SUMO isoforms, AtSUMO1, 2, 3 and 5, to a model substrate, AtMYB30, which is an Arabidopsis transcription factor. All four SUMO isoforms tested were able to SUMOylate AtMYB30. Furthermore, SUMOylation sites of AtMYB30 were characterized by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by mutational analysis in combination with this system. Using this reconstituted SUMOylation system, comparisons of SUMOylation patterns among SUMO isoforms can be made, and will provide insights into the SUMO isoform specificity of target modification. The identification of SUMOylation sites enables us to investigate the direct effects of SUMOylation using SUMOylation-defective mutants. This system will be a powerful tool for elucidation of the role of SUMOylation and of the biochemical and structural features of SUMOylated proteins in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Fatores de Transcrição/metabolismo
13.
Nucleic Acids Res ; 34(12): 3555-67, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16855292

RESUMO

The tails of core histones (H2A, H2B, H3 and H4) are critical for the regulation of chromatin dynamics. Each core histone tail is specifically recognized by various tail binding proteins. Here we screened for budding yeast histone H4-tail binding proteins in a protein differential display approach by two-dimensional gel electrophoresis (2DGE). To obtain highly enriched chromatin proteins, we used a Mg2+-dependent chromatin oligomerization technique. The Mg2+-dependent oligomerized chromatin from H4-tail deleted cells was compared with that from wild-type cells. We used mass spectrometry to identify 22 candidate proteins whose amounts were reduced in the oligomerized chromatin from the H4-tail deleted cells. A Saccharomyces Genome Database search revealed 10 protein complexes, each of which contained more than two candidate proteins. Interestingly, 7 out of the 10 complexes have the potential to associate with the H4-tail. We obtained in vivo evidence, by a chromatin immunoprecipitation assay, that one of the candidate proteins, Pwp1p, associates with the 25S ribosomal DNA (rDNA) chromatin in an H4-tail-dependent manner. We propose that the complex containing Pwp1p regulates the transcription of rDNA. Our results demonstrate that the protein differential display approach by 2DGE, using a histone-tail mutant, is a powerful method to identify histone-tail binding proteins.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , RNA Ribossômico/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cromatina/isolamento & purificação , Proteínas Cromossômicas não Histona/análise , Proteínas Cromossômicas não Histona/isolamento & purificação , Eletroforese em Gel Bidimensional , Histonas/genética , Magnésio/química , Nuclease do Micrococo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Deleção de Sequência
14.
Epigenetics Chromatin ; 11(1): 26, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29866182

RESUMO

BACKGROUND: Heat-shock molecular chaperone proteins (Hsps) promote the loading of small interfering RNA (siRNA) onto RNA interference (RNAi) effector complexes. While the RNAi process is coupled with heterochromatin assembly in several model organisms, it remains unclear whether the Hsps contribute to epigenetic gene regulation. In this study, we used the fission yeast Schizosaccharomyces pombe as a model organism and investigated the roles of Hsp90 and Mas5 (a nucleocytoplasmic type-I Hsp40 protein) in RNAi-dependent heterochromatin assembly. RESULTS: Using a genetic screen and biochemical analyses, we identified Hsp90 and Mas5 as novel silencing factors. Mutations in the genes encoding these factors caused derepression of silencing at the pericentromere, where heterochromatin is assembled in an RNAi-dependent manner, but not at the subtelomere, where RNAi is dispensable. The mutations also caused a substantial reduction in the level of dimethylation of histone H3 at Lys9 at the pericentromere, where association of the Argonaute protein Ago1 was also abrogated. Consistently, siRNA corresponding to the pericentromeric repeats was undetectable in these mutant cells. In addition, levels of Tas3, which is a protein in the RNA-induced transcriptional silencing complex along with Ago1, were reduced in the absence of Mas5. CONCLUSIONS: Our results suggest that the Hsps Hsp90 and Mas5 contribute to RNAi-dependent heterochromatin assembly. In particular, Mas5 appears to be required to stabilize Tas3 in vivo. We infer that impairment of Hsp90 and Hsp40 also may affect the integrity of the epigenome in other organisms.


Assuntos
Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP90/genética , Heterocromatina/genética , RNA Interferente Pequeno/genética , Schizosaccharomyces/genética , Proteínas Argonautas/metabolismo , Proteínas de Transporte/metabolismo , Centrômero/genética , Montagem e Desmontagem da Cromatina , Epigênese Genética , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Metilação , Mutação , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
15.
Nat Commun ; 8: 15662, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28585553

RESUMO

P bodies (PBs) and stress granules (SGs) are conserved cytoplasmic aggregates of cellular messenger ribonucleoprotein complexes (mRNPs) that are implicated in mRNA metabolism and play crucial roles in adult stem cell homeostasis and stress responses. However, the mechanisms underlying the dynamics of mRNP granules are poorly understood. Here, we report NEDD4, an E3 ubiquitin ligase, as a key regulator of mRNP dynamics that controls the size of the spermatogonial progenitor cell (SPC) pool. We find that NEDD4 targets an RNA-binding protein, NANOS2, in spermatogonia to destabilize it, leading to cell differentiation. In addition, NEDD4 is required for SG clearance. NEDD4 targets SGs and facilitates their rapid clearance through the endosomal-lysosomal pathway during the recovery period. Therefore, NEDD4 controls the turnover of mRNP components and inhibits pathological SG accumulation. Accordingly, we propose that a NEDD4-mediated mechanism regulates mRNP dynamics, and facilitates SPC homeostasis and viability under normal and stress conditions.


Assuntos
Ubiquitina-Proteína Ligases Nedd4/fisiologia , Ribonucleoproteínas/fisiologia , Espermatogônias/fisiologia , Células-Tronco/citologia , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Transdução de Sinais , Espermatogênese , Temperatura , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
16.
Genes Genet Syst ; 91(3): 151-159, 2016 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-27301280

RESUMO

In Saccharomyces cerevisiae, HMR/HML, telomeres and ribosomal DNA are heterochromatin-like regions in which gene transcription is prevented by the silent information regulator (Sir) complex. The Sir complex (Sir2, Sir3 and Sir4) can spread through chromatin from the silencer. Boundaries prevent Sir complex spreading, and we previously identified 55 boundary genes among all ~6,000 yeast genes. These boundary proteins can be distinguished into two types: those that activate transcription to prevent spreading of silencing, and those that prevent gene silencing by forming a boundary. We selected 44 transcription-independent boundary proteins from the 55 boundary genes by performing a one-hybrid assay and focused on GIC1 (GTPase interaction component 1). Gic1 is an effector of Cdc42, which belongs to the Rho family of small GTPases, and has not been reported to function in heterochromatin boundaries in vivo. We detected a novel boundary-forming activity of Gic1 at HMR-left and telomeric regions by conducting a chromatin immunoprecipitation assay with an anti-Sir3 antibody. We also found that Gic1 bound weakly to histones in two-hybrid analysis. Moreover, we performed domain analysis to identify domain(s) of Gic1 that are important for its boundary activity, and identified two minimum domains, which are located outside its Cdc42-binding domain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação a DNA/genética , Heterocromatina/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética , Sítios de Ligação , Histonas/genética , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Telômero/genética
17.
Science ; 335(6076): 1643-6, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22461616

RESUMO

Specific RNA recognition is usually achieved by specific RNA sequences and/or structures. However, we show here a mechanism by which RNA polymerase II (Pol II) transcripts are classified according to their length. The heterotetramer of the heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2 measures the length of the transcripts like a molecular ruler, by selectively binding to the unstructured RNA regions longer than 200 to 300 nucleotides. Thus, the tetramer sorts the transcripts into two RNA categories, to be exported as either messenger RNA or uridine-rich small nuclear RNA (U snRNA), depending on whether or not they are longer than the threshold, respectively. Our findings reveal a new function of the C tetramer and highlight the biological importance of RNA recognition by the length.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/metabolismo , Transcrição Gênica , Núcleo Celular/metabolismo , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/química , Humanos , Complexo Proteico Nuclear de Ligação ao Cap/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Multimerização Proteica , Splicing de RNA , RNA Interferente Pequeno , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/metabolismo
18.
PLoS One ; 7(6): e39714, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768111

RESUMO

Kif26b, a member of the kinesin superfamily proteins (KIFs), is essential for kidney development. Kif26b expression is restricted to the metanephric mesenchyme, and its transcription is regulated by a zinc finger transcriptional regulator Sall1. However, the mechanism(s) by which Kif26b protein is regulated remain unknown. Here, we demonstrate phosphorylation and subsequent polyubiquitination of Kif26b in the developing kidney. We find that Kif26b interacts with an E3 ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein 4 (Nedd4) in developing kidney. Phosphorylation of Kif26b at Thr-1859 and Ser-1962 by the cyclin-dependent kinases (CDKs) enhances the interaction of Kif26b with Nedd4. Nedd4 polyubiquitinates Kif26b and thereby promotes degradation of Kif26b via the ubiquitin-proteasome pathway. Furthermore, Kif26b lacks ATPase activity but does associate with microtubules. Nocodazole treatment not only disrupts the localization of Kif26b to microtubules but also promotes phosphorylation and polyubiquitination of Kif26b. These results suggest that the function of Kif26b is microtubule-based and that Kif26b degradation in the metanephric mesenchyme via the ubiquitin-proteasome pathway may be important for proper kidney development.


Assuntos
Rim/embriologia , Rim/metabolismo , Cinesinas/metabolismo , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitinação , Sequência de Aminoácidos , Animais , Linhagem Celular , Quinases Ciclina-Dependentes/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Cinesinas/química , Camundongos , Microtúbulos/metabolismo , Dados de Sequência Molecular , Ubiquitina-Proteína Ligases Nedd4 , Fosforilação , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo
19.
PLoS One ; 7(1): e29683, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22276125

RESUMO

We have previously identified the RNA recognition motif (RRM)-type RNA-binding protein Nrd1 as an important regulator of the posttranscriptional expression of myosin in fission yeast. Pmk1 MAPK-dependent phosphorylation negatively regulates the RNA-binding activity of Nrd1. Here, we report the role of Nrd1 in stress-induced RNA granules. Nrd1 can localize to poly(A)-binding protein (Pabp)-positive RNA granules in response to various stress stimuli, including heat shock, arsenite treatment, and oxidative stress. Interestingly, compared with the unphosphorylatable Nrd1, Nrd1(DD) (phosphorylation-mimic version of Nrd1) translocates more quickly from the cytoplasm to the stress granules in response to various stimuli; this suggests that the phosphorylation of Nrd1 by MAPK enhances its localization to stress-induced cytoplasmic granules. Nrd1 binds to Cpc2 (fission yeast RACK) in a phosphorylation-dependent manner and deletion of Cpc2 affects the formation of Nrd1-positive granules upon arsenite treatment. Moreover, the depletion of Nrd1 leads to a delay in Pabp-positive RNA granule formation, and overexpression of Nrd1 results in an increased size and number of Pabp-positive granules. Interestingly, Nrd1 deletion induced resistance to sustained stresses and enhanced sensitivity to transient stresses. In conclusion, our results indicate that Nrd1 plays a role in stress-induced granule formation, which affects stress resistance in fission yeast.


Assuntos
Ribonucleoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Arsenitos/farmacologia , Cloreto de Cádmio/farmacologia , Peróxido de Hidrogênio/farmacologia , Cloreto de Potássio/farmacologia , Ligação Proteica/efeitos dos fármacos , RNA Fúngico/metabolismo , Receptores de Quinase C Ativada , Receptores de Superfície Celular/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Compostos de Sódio/farmacologia , Temperatura
20.
Mol Cell Biol ; 32(12): 2279-88, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22493068

RESUMO

Recent work identified the E3 ubiquitin ligase CRL4(Cdt2) as mediating the timely degradation of Cdt1 during DNA replication and following DNA damage. In both cases, proliferating cell nuclear antigen (PCNA) loaded on chromatin mediates the CRL4(Cdt2)-dependent proteolysis of Cdt1. Here, we demonstrate that while replication factor C subunit 1 (RFC1)-RFC is required for Cdt1 degradation after UV irradiation during the nucleotide excision repair process, another RFC complex, Ctf18-RFC, which is known to be involved in the establishment of cohesion, has a key role in Cdt1 degradation in S phase. Cdt1 segments having only the degron, a specific sequence element in target protein for ubiquitination, for CRL4(Cdt2) were stabilized during S phase in Ctf18-depleted cells. Additionally, endogenous Cdt1 was stabilized when both Skp2 and Ctf18 were depleted. Since a substantial amount of PCNA was detected on chromatin in Ctf18-depleted cells, Ctf18 is required in addition to loaded PCNA for Cdt1 degradation in S phase. Our data suggest that Ctf18 is involved in recruiting CRL4(Cdt2) to PCNA foci during S phase. Ctf18-mediated Cdt1 proteolysis occurs independent of cohesion establishment, and depletion of Ctf18 potentiates rereplication. Our findings indicate that individual RFC complexes differentially control CRL4(Cdt2)-dependent proteolysis of Cdt1 during DNA replication and repair.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , Proteína de Replicação C/metabolismo , Fase S/fisiologia , ATPases Associadas a Diversas Atividades Celulares , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteólise , Fase S/efeitos da radiação , Ubiquitina-Proteína Ligases/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA