Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Lett ; 25(7): 1711-1724, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35616424

RESUMO

Beta(ß)-diversity, or site-to-site variation in species composition, generally decreases with increasing latitude, and the underlying processes driving this pattern have been challenging to elucidate because the signals of community assembly processes are scale-dependent. In this meta-analysis, by synthesising the results of 103 studies that were distributed globally and conducted at various spatial scales, we revealed a latitudinal gradient in the detectable assembly processes of vascular plant communities. Variations in plant community composition at low and high latitudes were mainly explained by geographic variables, suggesting that distance decay and dispersal limitations causing spatial aggregation are influential in these regions. In contrast, variation in species composition correlated most strongly with environmental variables at mid-latitudes (20-30°), reflecting the importance of environmental filtering, although this unimodal pattern was not statistically significant. Importantly, our analysis revealed the effects of different spatial scales, such that the correlation with spatial variables was stronger at smaller sampling extents, and environmental variables were more influential at larger sampling extents. We concluded that plant communities are driven by different community assembly processes in distinct biogeographical regions, suggesting that the latitudinal gradient of biodiversity is created by a combination of multiple processes that vary with environmental and species size differences.


Assuntos
Biodiversidade , Plantas
2.
Ecol Evol ; 12(5): e8884, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600699

RESUMO

Environmental heterogeneity is one of the most influential factors that create compositional variation among local communities. Greater compositional variation is expected when an environmental gradient encompasses the most severe conditions where species sorting is more likely to operate. However, evidence for stronger species sorting at severer environment has typically been obtained for less mobile organisms and tests are scarce for those with higher dispersal ability that allows individuals to sensitively respond to environmental stress. Here, with the dynamics of fish communities in a Japanese bay revealed by environmental DNA metabarcoding analyses as a model case, we tested the hypothesis that larger environmental heterogeneity caused by severe seasonal hypoxia (lower concentration of oxygen in bottom waters in summer) leads to larger variation of species composition among communities. During summer, fish species richness was lower in the bottom layer, suggesting the severity of the hypoxic bottom water. In contrast to the prediction, we found that although the environmental parameters of bottom and surface water was clearly distinct in summer, fish species composition was more similar between the two layers. Our null model analysis suggested that the higher compositional similarity during hypoxia season was not a result of the sampling effect reflecting differences in the alpha or gamma diversity. Furthermore, a shift in the species occurrence from bottom to surface layers was observed during hypoxia season, which was consistent across species, suggesting that the severe condition in the bottom adversely affected fish species irrespective of their identity. These results suggest that larger environmental heterogeneity does not necessarily lead to higher compositional variation once the environmental gradient encompasses extremely severe conditions. This is most likely because individual organisms actively avoided the severity quasi-neutrally, which induced mass effect-like dispersal and lead to the mixing of species composition across habitats. By showing counter evidence against the prevailing view, we provide novel insights into how species sorting by environment acts in heterogeneous and severe conditions.

3.
Ecol Evol ; 9(23): 13585-13595, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871668

RESUMO

Land-use changes, one of the greatest threats to global biodiversity, can cause underappreciated effects on ecosystems by altering the structures of interspecific interaction networks. These effects have typically been explored by evaluating interaction networks composed of a single type of interaction. Therefore, it remains unclear whether the different types of interaction networks sharing the same species respond to the same land-use changes in a similar manner.To compare the responses of herbivory and pollination networks to land-use changes, we investigated both types of interaction networks in seminatural grasslands categorized into three types of agricultural land-use (abandoned, extensively managed, and intensively managed) in a Japanese agricultural landscape. We quantified the structures of the interaction networks using several indices (connectance, evenness, diversity, generality, network specialization, and robustness) and compared them among different land-use types. We conducted piecewise SEM to differentiate the direct and indirect effects of land-use changes on the network structures.Although both land-use changes (abandonment and intensification) led to reduced plant and insect species richness, the structures of herbivory and pollination networks showed different responses to the land-use changes. There was a marked contrast in network generality; while, herbivore species were less generalized (i.e., having fewer host plant species) in fields with land-use intensification, pollinator species were less generalized in abandoned fields.Furthermore, the mechanisms behind the changes in interaction networks were also different between pollination and herbivory networks. The change in herbivory network generality was induced by the decrease in plant species richness, whereas the change in pollination network generality was mainly induced by the effect independent of changes in species richness and composition, which possibly reflect the less number of flowers in shaded environment.The present study demonstrates that agricultural land-use changes affect herbivory and pollination networks in contrasting ways and suggests the importance of assessing multiple types of interaction networks for biodiversity conservation in plant-insect systems. Our results also highlight the underappreciated importance of maintaining habitats with an intermediate intensity of land-use.

4.
Gene ; 562(1): 62-9, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25701401

RESUMO

Melanocortin receptor 3 (MC3R) is expressed in the hypothalamus and pituitary in humans and rodents, and is involved in the control of feeding, energy metabolism, and pituitary function. In the mouse pituitary, MC3R is detected in mammotrophs. This study aimed to clarify the regulatory mechanism for Mc3r expression in the mouse pituitary. The promoter activities of reporter constructs for the MC3R gene 5'-flanking region up to -4000 bp (transcription initiation site designated as +1) were analyzed. The promoter activity significantly increased in the -86/+109 construct, but decreased in the -38/+109 construct, indicating that the minimal promoter required for basal expression of Mc3r is located in the -86/+109 region. Putative binding sites for transcription factors AP-1 and ATF4 were found in the 5'-flanking region of Mc3r. Site-directed mutation or deletion of these sites affected the promoter activities. In gel-shift assays with a nuclear extract of mouse anterior pituitary cells, band-shifts were detected for both sites after the addition of the nuclear extract, and were decreased in the presence of excess unlabeled probe competitors. These results indicated that both sites were involved in the regulation of Mc3r expression in anterior pituitary cells. Estradiol-17ß treatment increased the Mc3r promoter activity, indicating that the gene is regulated by estradiol-17ß. In conclusion, we have demonstrated the minimum promoter region required for Mc3r expression, and identified two binding sites for AP-1 and ATF4 and in the 5' upstream-flanking region of Mc3r that are essential for Mc3r expression.


Assuntos
Fator 4 Ativador da Transcrição/genética , Adeno-Hipófise/metabolismo , Regiões Promotoras Genéticas , Receptor Tipo 3 de Melanocortina/genética , Fator de Transcrição AP-1/genética , Região 5'-Flanqueadora , Fator 4 Ativador da Transcrição/metabolismo , Animais , Sítios de Ligação , Estradiol/farmacologia , Regulação da Expressão Gênica , Genes Reporter , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Adeno-Hipófise/efeitos dos fármacos , Ligação Proteica , Receptor Tipo 3 de Melanocortina/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA