Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(39): e2221553120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722055

RESUMO

Accumulating evidence has demonstrated the presence of intertissue-communication regulating systemic aging, but the underlying molecular network has not been fully explored. We and others previously showed that two basic helix-loop-helix transcription factors, MML-1 and HLH-30, are required for lifespan extension in several longevity paradigms, including germlineless Caenorhabditis elegans. However, it is unknown what tissues these factors target to promote longevity. Here, using tissue-specific knockdown experiments, we found that MML-1 and its heterodimer partners MXL-2 and HLH-30 act primarily in neurons to extend longevity in germlineless animals. Interestingly, however, the downstream cascades of MML-1 in neurons were distinct from those of HLH-30. Neuronal RNA interference (RNAi)-based transcriptome analysis revealed that the glutamate transporter GLT-5 is a downstream target of MML-1 but not HLH-30. Furthermore, the MML-1-GTL-5 axis in neurons is critical to prevent an age-dependent collapse of proteostasis and increased oxidative stress through autophagy and peroxidase MLT-7, respectively, in long-lived animals. Collectively, our study revealed that systemic aging is regulated by a molecular network involving neuronal MML-1 function in both neural and peripheral tissues.


Assuntos
Envelhecimento , Neurônios , Animais , Envelhecimento/genética , Sistema X-AG de Transporte de Aminoácidos , Autofagia/genética , Caenorhabditis elegans/genética , Peroxidases , Proteínas de Caenorhabditis elegans/genética
2.
J Cell Sci ; 134(6)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33589500

RESUMO

TFEB, a basic helix-loop-helix transcription factor, is a master regulator of autophagy, lysosome biogenesis and lipid catabolism. Compared to posttranslational regulation of TFEB, the regulation of TFEB mRNA stability remains relatively uncharacterized. In this study, we identified the mRNA-binding protein THOC4 as a novel regulator of TFEB. In mammalian cells, siRNA-mediated knockdown of THOC4 decreased the level of TFEB protein to a greater extent than other bHLH transcription factors. THOC4 bound to TFEB mRNA and stabilized it after transcription by maintaining poly(A) tail length. We further found that this mode of regulation was conserved in Caenorhabditiselegans and was essential for TFEB-mediated lipid breakdown, which becomes over-represented during prolonged starvation. Taken together, our findings reveal the presence of an additional layer of TFEB regulation by THOC4 and provide novel insights into the function of TFEB in mediating autophagy and lipid metabolism.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Lisossomos , Animais , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Homeostase , Lisossomos/genética , RNA Mensageiro/genética
4.
Cell Rep ; 38(9): 110444, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235784

RESUMO

Accumulation of senescent cells affects organismal aging and the prevalence of age-associated disease. Emerging evidence suggests that activation of autophagy protects against age-associated diseases and promotes longevity, but the roles and regulatory mechanisms of autophagy in cellular senescence are not well understood. Here, we identify the transcription factor, MondoA, as a regulator of cellular senescence, autophagy, and mitochondrial homeostasis. MondoA protects against cellular senescence by activating autophagy partly through the suppression of an autophagy-negative regulator, Rubicon. In addition, we identify peroxiredoxin 3 (Prdx3) as another downstream regulator of MondoA essential for mitochondrial homeostasis and autophagy. Rubicon and Prdx3 work independently to regulate senescence. Furthermore, we find that MondoA knockout mice have exacerbated senescence during ischemic acute kidney injury (AKI), and a decrease of MondoA in the nucleus is correlated with human aging and ischemic AKI. Our results suggest that decline of MondoA worsens senescence and age-associated disease.


Assuntos
Injúria Renal Aguda , Senescência Celular , Animais , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Homeostase , Camundongos , Mitocôndrias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA