Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687579

RESUMO

The inconvenience of conventional wool ball polishing is that the surface finishing process should be equipped with a slurry container. The main objective of this research is to develop an ultrasonic-assisted surface finishing process for STAVAX mold steel on a 5-axis CNC machining center, by using new lab-made rubber polishing balls containing the abrasive aluminum oxide instead of the traditional wool ball polishing. In total, five types (type A to type E) of new rubber-matrixed polishing balls with a composite of nitrile butadiene rubber (NBR), an abrasive of aluminum oxide, and an additive of silicon dioxide have been developed. The performance of the composites with different grain sizes (0.05 µm to 3 µm) and concentrations of the abrasive of aluminum oxide have been investigated. The effects of multiple polishing passes on the surface roughness improvement for the lab-made polishing balls have also been investigated in this study. A surface roughness of Ra 0.027 µm on average was achieved by using the multiple polishing process of E-C-B-A. The volumetric wear of the lab-made polishing balls, using ultrasonic vibration-assisted polishing, can be improved from about 12.64% (type A) to 65.48% (type E) compared with the non-vibration-assisted polishing. The suitable combination of the ultrasonic vibration-assisted polishing parameters were an amplitude of 10 µm, a frequency of 23 kHz, a spindle speed of 5000 rpm, a feed rate of 60 mm/min, a stepover of 20 µm, a penetration depth of 180 µm, and a polishing pass of E-C-B-A, based on the experimental results. The surface roughness improvement on a test carrier with a saddle surface has also been presented by using the ultrasonic vibration-assisted polishing with the lab-made polishing balls.

2.
Appl Spectrosc ; 71(9): 2187-2198, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28418264

RESUMO

Collinear long and short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) was employed to clarify the emission characteristics from laser-induced plasma. The plasma was sustained and became stable by the long pulse-width laser with the pulse width of 60 µs under free running (FR) conditions as an external energy source. Comparing the measurement results of stainless steel in air using single-pulse LIBS (SP-LIBS) and DP-LIBS, the emission intensity was markedly enhanced using DP-LIBS. The temperature of plasma induced by DP-LIBS was maintained at a higher temperature under different gate delay time and short pulse-width laser power conditions compared with those measured using short SP-LIBS. Moreover, the variation rates of plasma temperatures measured using DP-LIBS were also lower. The superior detection ability was verified by the measurement of aluminum sample in water. The spectra were clearly detected using DP-LIBS, whereas it cannot be identified using SP-LIBS of short and long pulse widths. The effects of gate delay time and short pulse-width laser power were also discussed. These results demonstrate the feasibility and enhanced detection ability of the proposed collinear long and short DP-LIBS method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA