Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 7): 657-69, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21697604

RESUMO

The crystal structures of acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis (Mtb) and Corynebacterium ammoniagenes determined at pH 5.3 and pH 6.5, respectively, are reported. Comparison of the Mtb apo-AcpS structure with the recently reported structure of the Mtb AcpS-ADP complex revealed that AcpS adopts two different conformations: the orthorhombic and trigonal space-group structures show structural differences in the α2 helix and in the conformation of the α3-α4 connecting loop, which is in a closed conformation. The apo-AcpS structure shows electron density for the entire model and was obtained at lower pH values (4.4-6.0). In contrast, at a higher pH value (6.5) AcpS undergoes significant conformational changes, resulting in disordered regions that show no electron density in the AcpS model. The solved structures also reveal that C. ammoniagenes AcpS undergoes structural rearrangement in two regions, similar to the recently reported Mtb AcpS-ADP complex structure. In vitro reconstitution experiments show that AcpS has a higher post-translational modification activity between pH 4.4 and 6.0 than at pH values above 6.5, where the activity drops owing to the change in conformation. The results show that apo-AcpS and AcpS-ADP adopt different conformations depending upon the pH conditions of the crystallization solution.


Assuntos
Mycobacterium tuberculosis/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/química , Sequência de Aminoácidos , Sequência Conservada , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia Estrutural de Proteína
2.
J Mol Biol ; 340(4): 695-706, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15223314

RESUMO

Protein glutamine methylation at GGQ sites of protein chain release factors plays a pivotal role in the termination of translation. We report here the crystal structure of the Escherichia coli HemK protein (N5)-glutamine methyltransferase (MTase) in a binary complex with the methyl-donor product S-adenosyl-L-homocysteine (AdoHcy). HemK contains two domains: a putative substrate binding domain at the N terminus consisting of a five helix bundle and a seven-stranded catalytic domain at the C terminus that harbors the binding site for AdoHcy. The two domains are linked by a beta-hairpin. Structure-guided sequence analysis of the HemK family revealed 11 invariant residues functioning in methyl-donor binding and catalysis of methyl transfer. The putative substrate-binding domains of HemK from E.coli and Thermotoga maritima are structurally similar, despite the fact that they share very little sequence similarity. When the two proteins are aligned structurally, the helical N-terminal domain is subject to approximately 10 degrees of hinge movement relative to the C-terminal domain. The apparent hinge mobility of the two domains may reflect functional importance during the reaction cycle. Comparative phylogenetic analysis of the hemK gene and its frequent neighbor gene, prfA, which encodes a major substrate, provides evidence for several examples of lateral gene transfer.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Filogenia , Proteínas Metiltransferases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Escherichia coli/genética , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Sintenia , Thermotoga maritima/enzimologia , Thermotoga maritima/genética
3.
J Biol Chem ; 277(11): 9462-7, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11751891

RESUMO

The mevalonate-dependent pathway is used by many organisms to synthesize isopentenyl pyrophosphate, the building block for the biosynthesis of many biologically important compounds, including farnesyl pyrophosphate, dolichol, and many sterols. Mevalonate kinase (MVK) catalyzes a critical phosphoryl transfer step, producing mevalonate 5'-phosphate. The crystal structure of thermostable MVK from Methanococcus jannaschii has been determined at 2.4 A, revealing an overall fold similar to the homoserine kinase from M. jannaschii. In addition, the enzyme shows structural similarity with mevalonate 5-diphosphate decarboxylase and domain IV of elongation factor G. The active site of MVK is in the cleft between its N- and C-terminal domains. Several structural motifs conserved among species, including a phosphate-binding loop, have been found in this cavity. Asp(155), an invariant residue among MVK sequences, is located close to the putative phosphate-binding site and has been assumed to play the catalytic role. Analysis of the MVK model in the context of the other members of the GHMP kinase family offers the opportunity to understand both the mechanism of these enzymes and the structural details that may lead to the design of novel drugs.


Assuntos
Mathanococcus/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Galactoquinase/química , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA