Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37894707

RESUMO

The present work elucidates the fabrication of Barium Lanthanum Oxide nanosheets (BaLa2O4 NSs) via a simple one-pot precipitation method. The acquired results show an orthorhombic crystal system with an average crystallite size of 27 nm. The morphological studies revealed irregular-shaped sheets stacked together in a layered structure, with the confirmation of the precursor elements. The diffused reflectance studies revealed a strong absorption between 200 nm and 350 nm, from which the band-gap energy was evaluated to be 4.03 eV. Furthermore, the fluorescence spectrum was recorded for the prepared samples; the excitation spectrum shows a strong peak at 397 nm, attributed to the 4F7/2→4G11/2 transition, while the emission shows two prominent peaks at 420 nm (4G7/2→4F7/2) and 440 nm (4G5/2→4F7/2). The acquired emission results were utilized to confirm the color emission using a chromaticity plot, which found the coordinates to be at (0.1529 0.1040), and the calculated temperature was 3171 K. The as-prepared nanosheets were utilized in detecting latent fingerprints (LFPs) on various non-porous surfaces. The powder-dusting method was used to develop latent fingerprints on various non-porous surfaces, which resulted in detecting all the three ridge patterns. Furthermore, the as-synthesized nanosheets were used to degrade methyl red (MR) dye, the results of which show more than 60% degradation at the 70th minute. It was also found that there was no further degradation after 70 min. All the acquired results suggest the clear potential of the prepared BaLa2O4 NSs for use in advanced forensic and photocatalytic applications.

2.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838574

RESUMO

In the present study, the binding affinity of 52 bioactive secondary metabolites from Wedelia trilobata towards the anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein (PDB: 2W3L) structure was identified by using in silico molecular docking and molecular dynamics simulation. The molecular docking results demonstrated that the binding energies of docked compounds with Bcl-2 protein ranged from -5.3 kcal/mol to -10.1 kcal/mol. However, the lowest binding energy (-10.1 kcal/mol) was offered by Friedelin against Bcl-2 protein when compared to other metabolites and the standard drug Obatoclax (-8.4 kcal/mol). The molecular dynamics simulations revealed that the Friedelin-Bcl-2 protein complex was found to be stable throughout the simulation period of 100 ns. Overall, the predicted Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of Friedelin are relatively better than Obatoclax, with the most noticeable differences in many parameters where Friedelin has no AMES toxicity, hepatotoxicity, and skin sensitization. The ADMET profiling of selected compounds supported their in silico drug-likeness properties. Based on the computational analyses, the present study concluded that Friedelin of W. trilobata was found to be the potential inhibitor of the Bcl-2 protein, which merits attention for further in vitro and in vivo studies before clinical trials.


Assuntos
Neoplasias , Compostos Fitoquímicos , Wedelia , Humanos , Proteínas Reguladoras de Apoptose , Sobrevivência Celular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Wedelia/química , Compostos Fitoquímicos/farmacologia
3.
Molecules ; 28(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36770771

RESUMO

Bacterial infections are one of the leading causes of morbidity, mortality, and healthcare complications in patients. Leptospirosis is found to be the most prevalent, re-emergent, and neglected tropical zoonotic disease worldwide. The adaptation to various environmental conditions has made Leptospira acquire a large genome (~4.6 Mb) and a complex outer membrane, making it unique among bacteria that mimic the symptoms of jaundice and hemorrhage. Sph2 is another important virulence factor that enhances hemolytic sphingomyelinase-capable of moving inside mitochondria-which increases the ROS level and decreases the mitochondrial membrane potential, thereby leading to cell apoptosis. In the present study, 25 suspected bovine serum samples were subjected to the Microscopic Agglutination Test (MAT) across the Mysuru region. Different samples, such as urine, serum, and aborted materials from the confirmed MAT-positive animals, were used for isolation and genomic detection by conventional PCR targeting virulence gene, Lipl32, using specific primers. Further, in vitro and in silico studies were performed on isolated cultures to assess the anti-leptospiral, anti-hemolytic, and sphingomyelinase enzyme inhibition using novel pseudopeptides. The microdilution technique (MDT) and dark field microscope (DFM) assays revealed that at a concentration of 62.5 µg/mL, the pseudopeptide inhibited 100% of the growth of Leptospira spp., suggesting its efficiency in the treatment of leptospirosis. The flow cytometry analyses show the potency of the pseudopeptide against sphingomyelinase enzymes using human umbilical vein endothelial cells (HUVECs). Thus, the present study demonstrated the efficacy of the pseudopeptide in the inhibition of the growth of Leptospira, and therefore, this can be used as an alternative drug for the treatment of leptospirosis.


Assuntos
Anti-Infecciosos , Leptospira , Leptospirose , Animais , Humanos , Células Endoteliais , Leptospira/genética , Leptospirose/tratamento farmacológico , Leptospirose/diagnóstico , Leptospirose/microbiologia , Esfingomielina Fosfodiesterase , Hemostáticos/farmacologia
4.
Molecules ; 27(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500665

RESUMO

The present work describes the chemical preparation of Schiff bases derived from 4,4'-diaminodiphenyl sulfone (L1-L5) and their Co(II) metal complexes. The evaluation of antimicrobial and anticancer activities against MCF-7 cell line and human lung cancer cell line A-549 was performed. The aforementioned synthesized compounds are characterized by spectroscopic techniques and elemental analysis confirms successful synthesis. The results from the above analytical techniques revealed that the complexes are in an octahedral geometry. The antimicrobial activity of the synthesized Schiff base ligands and their metal complexes under study was carried out by using the agar well diffusion method. The ligand and complex interactions for biological targets were predicted using molecular docking and high binding affinities. Further, the anticancer properties of the synthesized compounds are performed against the MCF-7 cell line and human lung cancer cell line A-549 using adriamycin as the standard drug.


Assuntos
Anti-Infecciosos , Complexos de Coordenação , Neoplasias Pulmonares , Humanos , Bases de Schiff/farmacologia , Bases de Schiff/química , Ligantes , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Simulação de Acoplamento Molecular , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Antibacterianos
5.
Molecules ; 27(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36235085

RESUMO

Herein we describe the synthesis of a series of nickel(II) complexes (C1-C3) with Schiff bases (HL1-HL3) derived from 4-amino-5-mercapto-3-methyl-1,2,4-triazole and ortho/meta/para-nitrobenzaldehyde having composition [Ni(L)2(H2O)2]. The obtained ligands and their complexes were characterized using physico-chemical techniques viz., elemental analysis, magnetic moment study, spectral (electronic, FT-IR, 1H-NMR) and thermal analysis. The elemental analysis and spectral analysis revealed that Schiff bases behave as monoanionic bidentate ligands towards the Ni(II) ion. Whereas, the magnetic moment study suggested the octahedral geometry of all the Ni(II) complexes. The thermal behavior of the complexes has been studied by thermogravimetric analysis and agrees well with the composition of complexes. Further, the biological activities such as antimicrobial and antifungal studies of the Schiff bases and Ni(II) complexes have been screened against bacterial species (Staphylococcus aureus and Pseudomonas aeruginosa) and fungal species (Aspergillus niger and Candida albicans) activity by MIC method, the results of which revealed that metal complexes exhibited significant antimicrobial activities than their respective ligands against the tested microbial species. Furthermore, the molecular docking technique was employed to investigate the active sites of the selected protein, which indeed helped us to screen the potential anticancer agents among the synthesized ligand and complexes. Further, these compounds have been screened for their in vitro anticancer activity using OVCAR-3 cell line. The results revealed that the complexes are more active than the ligands.


Assuntos
Anti-Infecciosos , Antineoplásicos , Complexos de Coordenação , Neoplasias Ovarianas , Antibacterianos/química , Anti-Infecciosos/química , Antifúngicos/química , Antifúngicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Benzaldeídos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Feminino , Humanos , Ligantes , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Níquel/química , Bases de Schiff/química , Espectroscopia de Infravermelho com Transformada de Fourier , Triazóis/química , Triazóis/farmacologia
6.
Molecules ; 27(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35458641

RESUMO

Cancer is one of the leading causes of death worldwide, accountable for a total of 10 million deaths in the year 2020, according to GLOBOCAN 2020. The advancements in the field of cancer research indicate the need for direction towards the development of new drug candidates that are instrumental in a tumour-specific action. The pool of natural compounds proves to be a promising avenue for the discovery of groundbreaking cancer therapeutics. Elaeocarpus ganitrus (Rudraksha) is known to possess antioxidant properties and after a thorough review of literature, it was speculated to possess significant biomedical potential. Green synthesis of nanoparticles is an environmentally friendly approach intended to eliminate toxic waste and reduce energy consumption. This approach was reported for the synthesis of silver nanoparticles from two different solvent extracts: aqueous and methanolic. These were characterized by biophysical and spectroscopic techniques, namely, UV-Visible Spectroscopy, FTIR, XRD, EDX, DLS, SEM, and GC-MS. The results showed that the nanoconjugates were spherical in geometry. Further, the assessment of antibacterial, antifungal, and antiproliferative activities was conducted which yielded results that were qualitatively positive at the nanoscale. The nanoconjugates were also evaluated for their anticancer properties using a standard MTT Assay. The interactions between the phytochemicals (ligands) and selected cancer receptors were also visualized in silico using the PyRx tool for molecular docking.


Assuntos
Elaeocarpaceae , Nanopartículas Metálicas , Antibacterianos/química , Química Verde , Nanopartículas Metálicas/química , Simulação de Acoplamento Molecular , Nanoconjugados , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/química , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Molecules ; 27(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35209226

RESUMO

Researchers are interested in Schiff bases and their metal complexes because they offer a wide range of applications. The chemistry of Schiff bases of heterocompounds has got a lot of attention because of the metal's ability to coordinate with Schiff base ligands. In the current study, a new bidentate Schiff base ligand, N-((1H-pyrrol-2-yl)methylene)-6-methoxypyridin-3-amine (MPM) has been synthesized by condensing 6-methoxypyridine-3-amine with pyrrole-2-carbaldehyde. Further, MPM is used to prepare Cu(II) and Co(II) metal complexes. Analytical and spectroscopic techniques are used for the structural elucidation of the synthesized compounds. Both MPM and its metal complexes were screened against Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Klebsiella pneumoniae species for antimicrobial studies. Furthermore, these compounds were subjected to in silico studies against bacterial proteins to comprehend their best non-bonded interactions. The results confirmed that the Schiff base ligand show considerably higher binding affinity with good hydrogen bonding and hydrophobic interactions against various tested microbial species. These results were complemented with a report of the Conceptual DFT global reactivity descriptors of the studied compounds together with their biological scores and their ADMET computed parameters.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Cobalto/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/síntese química , Técnicas de Química Sintética , Complexos de Coordenação/síntese química , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Bases de Schiff/química , Análise Espectral
8.
Molecules ; 27(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500380

RESUMO

The ever-expanding pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has gained attention as COVID-19 and caused an emergency in public health to an unmatched level to date. However, the treatments used are the only options; currently, no effective and licensed medications are available to combat disease transmission, necessitating further research. In the present study, an in silico-based virtual screening of anti-HIV bioactive compounds from medicinal plants was carried out through molecular docking against the main protease (Mpro) (PDB: 6LU7) of SARS-CoV-2, which is a key enzyme responsible for virus replication. A total of 16 anti-HIV compounds were found to have a binding affinity greater than -8.9 kcal/mol out of 150 compounds screened. Pseudohypericin had a high affinity with the energy of -10.2 kcal/mol, demonstrating amino acid residual interactions with LEU141, GLU166, ARG188, and GLN192, followed by Hypericin (-10.1 kcal/mol). Moreover, the ADME (Absorption, Distribution, Metabolism and Excretion) analysis of Pseudohypericin and Hypericin recorded a low bioavailability (BA) score of 0.17 and violated Lipinski's rule of drug-likeness. The docking and molecular simulations indicated that the quinone compound, Pseudohypericin, could be tested in vitro and in vivo as potent molecules against COVID-19 disease prior to clinical trials.This was also supported by the theoretical and computational studies conducted. The global and local descriptors, which are the underpinnings of Conceptual Density FunctionalTheory (CDFT) have beenpredicted through successful model chemistry, hoping that they could be of help in the comprehension of the chemical reactivity properties of the molecular systems considered in this study.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Acoplamento Molecular , Proteases 3C de Coronavírus , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia
9.
Curr Issues Mol Biol ; 43(3): 1502-1517, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34698063

RESUMO

Genistein is an isoflavonoid present in high quantities in soybeans. Possessing a wide range of bioactives, it is being studied extensively for its tumoricidal effects. Investigations into mechanisms of the anti-cancer activity have revealed many pathways including induction of cell proliferation, suppression of tyrosine kinases, regulation of Hedgehog-Gli1 signaling, modulation of epigenetic activities, seizing of cell cycle and Akt and MEK signaling pathways, among others via which the cancer cell proliferation can be controlled. Notwithstanding, the observed activities have been time- and dose-dependent. In addition, genistein has also shown varying results in women depending on the physiological parameters, such as the early or post-menopausal states.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Genisteína/farmacologia , Indutores da Angiogênese , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Biomarcadores Tumorais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Ciclo Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Descoberta de Drogas , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genisteína/análogos & derivados , Genisteína/química , Genisteína/uso terapêutico , Humanos , Glycine max/química , Relação Estrutura-Atividade
10.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361745

RESUMO

The edible parts of the plants Camellia sinensis, Vitis vinifera and Withania somnifera were extensively used in ancient practices such as Ayurveda, owing to their potent biomedical significance. They are very rich in secondary metabolites such as polyphenols, which are very good antioxidants and exhibit anti-carcinogenic properties. This study aims to evaluate the anti-cancerous properties of these plant crude extracts on human liver cancer HepG2 cells. The leaves of Camellia sinensis, Withania somnifera and the seeds of Vitis vinifera were collected and methanolic extracts were prepared. Then, these extracts were subjected to DPPH, α- amylase assays to determine the antioxidant properties. A MTT assay was performed to investigate the viability of the extracts of HepG2 cells, and the mode of cell death was detected by Ao/EtBr staining and flow cytometry with PI Annexin- V FITC dual staining. Then, the protein expression of BAX and BCl2 was studied using fluorescent dye to determine the regulation of the BAX and BCl2 genes. We observed that all the three extracts showed the presence of bioactive compounds such as polyphenols or phytochemicals. The W. somnifera bioactive compounds were found to have the highest anti-proliferative activity on human liver cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Camellia sinensis/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Vitis/química , Withania/química , Alcaloides/química , Alcaloides/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/química , Morte Celular/efeitos dos fármacos , Flavonoides/química , Flavonoides/isolamento & purificação , Células Hep G2 , Humanos , Picratos/antagonistas & inibidores , Picratos/química , Extratos Vegetais/química , Folhas de Planta/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sementes/química , Transdução de Sinais , Taninos/química , Taninos/isolamento & purificação , Terpenos/química , Terpenos/isolamento & purificação , alfa-Amilases/genética , alfa-Amilases/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
11.
Molecules ; 26(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34833955

RESUMO

NAD(P)H:quinone acceptor oxidoreductase-1 (NQO1) is a ubiquitous flavin adenine dinucleotide-dependent flavoprotein that promotes obligatory two-electron reductions of quinones, quinonimines, nitroaromatics, and azo dyes. NQO1 is a multifunctional antioxidant enzyme whose expression and deletion are linked to reduced and increased oxidative stress susceptibilities. NQO1 acts as both a tumor suppressor and tumor promoter; thus, the inhibition of NQO1 results in less tumor burden. In addition, the high expression of NQO1 is associated with a shorter survival time of cancer patients. Inhibiting NQO1 also enables certain anticancer agents to evade the detoxification process. In this study, a series of phytobioactives were screened based on their chemical classes such as coumarins, flavonoids, and triterpenoids for their action on NQO1. The in silico evaluations were conducted using PyRx virtual screening tools, where the flavone compound, Orientin showed a better binding affinity score of -8.18 when compared with standard inhibitor Dicumarol with favorable ADME properties. An MD simulation study found that the Orientin binding to NQO1 away from the substrate-binding site induces a potential conformational change in the substrate-binding site, thereby inhibiting substrate accessibility towards the FAD-binding domain. Furthermore, with this computational approach we are offering a scope for validation of the new therapeutic components for their in vitro and in vivo efficacy against NQO1.


Assuntos
Antineoplásicos/farmacologia , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Antioxidantes/farmacologia , Sítios de Ligação/efeitos dos fármacos , Cumarínicos/farmacologia , Flavonas/farmacologia , Flavonoides/farmacologia , Humanos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Triterpenos/farmacologia
12.
Molecules ; 26(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922292

RESUMO

Nanoworld is an attractive sphere with the potential to explore novel nanomaterials with valuable applications in medicinal science. Herein, we report an efficient and ecofriendly approach for the synthesis of Nickel oxide nanoparticles (NiO NPs) via a solution combustion method using Areca catechu leaf extract. As-prepared NiO NPs were characterized using various analytical tools such as powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-Visible spectroscopy (UV-Vis). XRD analysis illustrates that synthesized NiO NPs are hexagonal structured crystallites with an average size of 5.46 nm and a hexagonal-shaped morphology with slight agglomeration. The morphology, size, and shape of the obtained material was further confirmed using SEM and TEM analysis. In addition, as-prepared NiO NPs have shown potential antidiabetic and anticancer properties. Our results suggest that the inhibition of α-amylase enzyme with IC 50 value 268.13 µg/mL may be one of the feasible ways through which the NiO NPs exert their hypoglycemic effect. Furthermore, cytotoxic activity performed using NiO NPs exhibited against human lung cancer cell line (A549) proved that the prepared NiO NPs have significant anticancer activity with 93.349 µg/mL at 50% inhibition concentration. The biological assay results revealed that NiO NPs exhibited significant cytotoxicity against human lung cancer cell line (A549) in a dose-dependent manner from 0-100 µg/mL, showing considerable cell viability. Further, the systematic approach deliberates the NiO NPs as a function of phenolic extracts of A. catechu with vast potential for many biological and biomedical applications.


Assuntos
Antineoplásicos/farmacologia , Areca/química , Hipoglicemiantes/farmacologia , Nanopartículas Metálicas/química , Níquel/química , Extratos Vegetais/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Humanos , Hipoglicemiantes/química , Nanopartículas Metálicas/ultraestrutura , Extratos Vegetais/química , Análise Espectral , Difração de Raios X
13.
Molecules ; 26(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066433

RESUMO

Candida albicans, an opportunistic fungal pathogen, frequently colonizes immune-compromised patients and causes mild to severe systemic reactions. Only few antifungal drugs are currently in use for therapeutic treatment. However, evolution of a drug-resistant C. albicans fungal pathogen is of major concern in the treatment of patients, hence the clinical need for novel drug design and development. In this study, in vitro screening of novel putative pyrrolo[1,2-a]quinoline derivatives as the lead drug targets and in silico prediction of the binding potential of these lead molecules against C. albicans pathogenic proteins, such as secreted aspartic protease 3 (SAP3; 2H6T), surface protein ß-glucanase (3N9K) and sterol 14-alpha demethylase (5TZ1), were carried out by molecular docking analyses. Further, biological activity-based QSAR and theoretical pharmacokinetic analysis were analyzed. Here, in vitro screening of novel analogue derivatives as drug targets against C. albicans showed inhibitory potential in the concentration of 0.4 µg for BQ-06, 07 and 08, 0.8 µg for BQ-01, 03, and 05, 1.6 µg for BQ-04 and 12.5 µg for BQ-02 in comparison to the standard antifungal drug fluconazole in the concentration of 30 µg. Further, in silico analysis of BQ-01, 03, 05 and 07 analogues docked on chimeric 2H6T, 3N9K and 5TZ1 revealed that these analogues show potential binding affinity, which is different from the therapeutic antifungal drug fluconazole. In addition, these molecules possess good drug-like properties based on the determination of conceptual Density Functional Theory (DFT)-based descriptors, QSAR and pharmacokinetics. Thus, the study offers significant insight into employing pyrrolo[1,2-a]quinoline analogues as novel antifungal agents against C. albicans that warrants further investigation.


Assuntos
Antifúngicos/síntese química , Ácidos Carboxílicos/síntese química , Teoria da Densidade Funcional , Simulação de Acoplamento Molecular , Antifúngicos/farmacocinética , Candida albicans , Ácidos Carboxílicos/farmacocinética , Química Farmacêutica/métodos , Desenho de Fármacos , Fluconazol/farmacologia , Ligação de Hidrogênio , Indolizinas/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Conformação Proteica , Relação Quantitativa Estrutura-Atividade , Quinolinas/síntese química , Quinolinas/farmacocinética , Termodinâmica
14.
Molecules ; 25(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143044

RESUMO

The increasing interest in developing potent non-toxic drugs in medicine is widening the opportunities for studying the usage of nanostructures in the treatment of various diseases. The present work reports a method for a facile and an eco-friendly synthesis of silver nanoparticles (AgNPs) using Terminalia chebula fruit extract (TCE). The obtained AgNPs was characterized by using different spectroscopic and microscopic techniques. The analysis of the results revealed that the as-obtained AgNPs have spherical morphology with an average diameter of 22 nm. Furthermore, the preliminary bioactivity evaluations revealed that the bio-conjugation of AgNPs, using TCE, significantly enhanced the antibacterial and anti-breast cancer potentials of the latter. The antibacterial activity of the as-prepared AgNPs showed that B. subtilis was more sensitive towards the AgNPs, followed by P. aeruginosa; while, E. coli and S. mutans showed comparatively minimal sensitivity toward the AgNPs. The IC50 values of TCE, AgNPs and TCE + AgNPs treatment of MCF-7 were found to be 17.53, 14.25 and 6.484 µg/mL, respectively. Therefore, it can be ascertained that the bio-conjugation may provide a headway with regard to the therapeutic employment of T. chebula, upon mechanistically understanding the basis of observed antibacterial and anticancer activities.


Assuntos
Anti-Infecciosos , Bacillus subtilis/crescimento & desenvolvimento , Neoplasias da Mama/tratamento farmacológico , Citotoxinas , Frutas/química , Nanopartículas Metálicas , Extratos Vegetais/química , Prata , Terminalia/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Feminino , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Prata/química , Prata/farmacologia
15.
Molecules ; 25(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580359

RESUMO

Herein we report the synthesis and structural elucidation of two novel imine-based ligands, 2-(1,10-phenanthrolin-5-yl)imino)methyl)-5-bromophenol (PIB) and N-(1,10-phenanthrolin-5-yl)-1-(thiophen-3-yl)methanimine (PTM) ligands. An in vitro cytotoxicity assay of the synthesized molecules was carried out against breast, cervical, colorectal, and prostate cancer cell lines as well as immortalized human keratinocytes. The observations indicated that both the molecules possesses dose-dependent selective cytotoxicity of cancer cells with no detrimental effect on the normal cell lines. Furthermore, the detailed computational analysis of newly synthetized ligands (PIB and PTM) has been conducted in order to identify their most important parts from the perspective of local reactivity. The IC50 values of PIB treatment on MCF-7, HeLa, HCT-116 and PC-3 were 15.10, 16.25, 17.88, 17.55 and 23.86 micromoles, respectively. Meanwhile, the IC50 values of PTM on MCF-7, HeLa, HCT-116, PC-3 and HaCat were observed to be 14.82, 15.03, 17.88, 17.28 and 21.22 micromoles, respectively. For computational analysis, we have employed the combination of Density Functional Theory (DFT) calculations and MD simulations. DFT calculations provided us with information about structure and reactivity descriptors based on the electron distribution. Surfaces of molecular electrostatic potential (MEP) and averaged local ionization energy (ALIE) indicated the sites within studied molecules that are most reactive. These results indicated the importance of nitrogen atoms and OH group. Additionally, the values of bond dissociation for hydrogen abstraction showed that both molecules, especially the PTM, are stable toward the influence of autoxidation mechanism. On the other side, MD simulations gave us an insight how ligands interact with water molecules. Namely, the radial distribution functions (RDF) indicated that the hydrogen atom of the OH group in the case of the PIB has the most pronounced interactions with water.


Assuntos
Proliferação de Células/efeitos dos fármacos , Iminas/farmacologia , Neoplasias/tratamento farmacológico , Fenantrolinas/farmacologia , Linhagem Celular Tumoral , Humanos , Iminas/síntese química , Iminas/química , Ligantes , Simulação de Acoplamento Molecular , Neoplasias/patologia , Fenantrolinas/síntese química , Fenantrolinas/química , Água/química
16.
Sensors (Basel) ; 18(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115894

RESUMO

In the present study, we describe the facile synthesis of silver nanoparticles (AgNPs) and their nanostructures functionalized with 2-aminopyrimidine-4,6-diol (APD-AgNPs) for Hg2+ ion detection. The promising colorimetric response of APD-AgNPs to detect Hg2+ ions was visible with naked eyes and spectroscopic changes were examined by using a UV-Visible spectrophotometer. The aggregation of APD-AgNPs upon addition of Hg2+ ions was due to the chelation effect of the functionalized nanostructures and results in a color change from pale brown to deep yellow color. The probing sensitivity was observed within five minutes with a detection limit of about 0.35 µM/L. The TEM images of APD-AgNPs showed polydispersed morphologies with hexagonal, heptagonal and spherical nanostructures with an average size between 10 to 40 nm. Furthermore, the sensing behavior of APD-AgNPs towards Hg2+ ions detection was investigated using docking and interaction studies.

17.
Expert Opin Investig Drugs ; 33(3): 171-182, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372666

RESUMO

INTRODUCTION: Targeted therapy is used to treat lung adenocarcinoma caused by epidermal growth factor receptor (EGFR) mutations in the tyrosine kinase domain and rare subtypes (<5%) of non-small cell lung cancer. These subtypes include fusion oncoproteins like anaplastic lymphoma kinase (ALK), ROS1, rearranged during transfection (RET), and other receptor tyrosine kinases (RTKs). The use of diverse selective oral inhibitors, including those targeting rat sarcoma viral oncogene homolog (KRAS) mutations, has significantly improved clinical responses, extending progression-free and overall survival. AREAS COVERED: Resistance remains a critical issue in lung adenocarcinoma, notably in EGFR mutant, echinoderm microtubule associated protein-like 4 (EML4)-ALK fusion, and KRAS mutant tumors, often associated with epithelial-to-mesenchymal transition (EMT). EXPERT OPINION: Despite advancements in next generation EGFR inhibitors and EML4-ALK therapies with enhanced brain penetrance and identifying resistance mutations, overcoming resistance has not been abated. Various strategies are being explored to overcome this issue to achieve prolonged cancer remission and delay resistance. Targeting yes-associated protein (YAP) and the mechanisms associated with YAP activation through Hippo-dependent or independent pathways, is desirable. Additionally, the exploration of liquid-liquid phase separation in fusion oncoproteins forming condensates in the cytoplasm for oncogenic signaling is a promising field for the development of new treatments.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/uso terapêutico , Adenocarcinoma de Pulmão/tratamento farmacológico , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/uso terapêutico , Mutação , Receptores ErbB/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
18.
Heliyon ; 10(14): e34427, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39104478

RESUMO

This study focuses on the solution combustion approach to examine the nanostructures of undoped and doped ZnO with different concentrations of Al (0.1 % and 0.2 %). Various physical techniques were utilized to characterize the synthesized nanoparticles. X-ray diffraction (XRD) revealed the crystalline materials, while scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) findings confirmed the products with particle size and the insertion of Al into the ZnO lattice. Fourier-transform infrared spectra (FTIR) confirmed the presence of different functional groups in the obtained material. The results indicate that Al-doped ZnO (Al-ZnO) nanoparticles show promising properties for optoelectronics and photoluminescence. Photoluminescence analysis indicated that an increase in Al3+ (0.2 %) concentration resulted in a decrease in peak intensity and an increase in the full width at half maximum. The band gap was calculated using the Taucs plot. The study also highlights the effectiveness of Zn1-xAlxO nanostructures in degrading organic pollutants, particularly in adsorbing Malachite Green (MG) dye. Among the samples, the 0.2 % Al-doped ZnO exhibited superior dye degradation efficiency due to its enhanced adsorption capacity and smaller particle size, as evidenced by multilayer adsorption capacity and chemisorption during the degradation process. This study provides valuable insights into the potential applications of Al-doped ZnO nanoparticles in various environmental and technological fields, emphasizing their significance in the degradation of organic pollutants.

19.
Front Chem ; 12: 1366370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081544

RESUMO

Introduction: Leukemia is a global health concern that requires alternative treatments due to the limitations of the FDA-approved drugs. Our focus is on p53, a crucial tumor suppressor that regulates cell division. It appears possible to stabilize p53 without causing damage to DNA by investigating dual-acting inhibitors that target both ligases. The paper aims to identify small molecule modulators of Mdm2 and Pirh2 by using 3D structural models of p53 residues and to further carry out the synthesis and evaluation of hit candidates for anti-cancer potency by in vitro and in silico studies. Methods: We synthesized structural analogues of MMs02943764 and MMs03738126 using a 4,5-(substituted) 1,2,4-triazole-3-thiols with 2-chloro N-phenylacetamide in acetone with derivatives of PAA and PCA were followed. Cytotoxicity assays, including MTT, Trypan Blue Exclusion, and MTS assays, were performed on cancer cell lines. Anti-proliferation activity was evaluated using K562 cells. Cell cycle analysis and protein expression studies of p53, Mdm2, and Pirh2 were conducted using flow cytometry. Results: As for results obtained from our previous studies MMs02943764, and MMs03738126 were selected among the best-fit hit molecules whose structural analogues were further subjected to molecular docking and dynamic simulation. Synthesized compounds exhibited potent anti-proliferative effects, with PAC showing significant cytotoxicity against leukemia cells. PAC induced cell cycle arrest and modulated p53, Mdm2, and Pirh2 protein expressions in K562 cells. Molecular docking revealed strong binding affinity of PAC to p53 protein, further confirmed by molecular dynamics simulation. Discussion: The study presents novel anticancer compounds targeting the p53 ubiquitination pathway, exemplified by PAC. Future perspectives involve further optimization and preclinical studies to validate PAC's potential as an effective anticancer therapy.

20.
Crit Rev Oncol Hematol ; 195: 104228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072173

RESUMO

KRAS G12C mutations in non-small cell lung cancer (NSCLC) partially respond to KRAS G12C covalent inhibitors. However, early adaptive resistance occurs due to rewiring of signaling pathways, activating receptor tyrosine kinases, primarily EGFR, but also MET and ligands. Evidence indicates that treatment with KRAS G12C inhibitors (sotorasib) triggers the MRAS:SHOC2:PP1C trimeric complex. Activation of MRAS occurs from alterations in the Scribble and Hippo-dependent pathways, leading to YAP activation. Other mechanisms that involve STAT3 signaling are intertwined with the activation of MRAS. The high-resolution MRAS:SHOC2:PP1C crystallization structure allows in silico analysis for drug development. Activation of MRAS:SHOC2:PP1C is primarily Scribble-driven and downregulated by HUWE1. The reactivation of the MRAS complex is carried out by valosin containing protein (VCP). Exploring these pathways as therapeutic targets and their impact on different chemotherapeutic agents (carboplatin, paclitaxel) is crucial. Comutations in STK11/LKB1 often co-occur with KRAS G12C, jeopardizing the effect of immune checkpoint (anti-PD1/PDL1) inhibitors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Paclitaxel , Carboplatina , Mutação , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA