Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Dev Dyn ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855428

RESUMO

BACKGROUND: Annual or seasonal killifishes (Cyprinodontiformes: Nothobranchiidae) are unique among fish in their ability to enter into developmental arrests (diapauses: DI, DII, and DIII). They have a short lifespan and their embryos are exceptionally tolerant to a variety of environmental stresses. These traits make them a popular model for studying vertebrate diapause, aging, stress tolerance, genome adaptation, and evolution. In such issues, in a comparative evolutionary framework, Fundulopanchax gardneri, a popular aquarium fish from Africa, is commonly used as a representative non-annual model though its development is not studied in detail and whether it includes diapauses remains uncertain. RESULTS: We described in detail for the first time embryonic development of F. gardneri and revealed it to resemble that in the undoubtedly annual Austrofundulus limnaeus killifish in displaying two developmental depressions. However, if compared with A. limnaeus, these developmental states look like "less intense" versions of DII and DIII rather than true diapauses. CONCLUSIONS: To determine whether developmental depressions in F. gardneri represent "true" diapauses or only their functional equivalents, detailed studies of embryonic development of different killifish both annual and non-annual are needed. Before that, acceptance of F. gardneri as a representative non-annual fish seems premature.

2.
J Evol Biol ; 36(10): 1471-1483, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37731226

RESUMO

The streams draining volcanic landscapes are often characterized by a complex series of factors that negatively affect hydrobionts and lead to declines in their populations. However, in a number of cases, a range of rapid adaptive changes ensure the resilience of hydrobiont populations. Here, we present both field and experimental data shedding light on the physiological basis of adaptation to heavy metal contamination in populations of Dolly Varden charr (Salvelinus malma) differing in duration of isolation in volcanic streams. The study reveals that isolated populations have a physiological phenotype that distinguishes them from populations inhabiting clean waters. They are characterized by a hyperthyroid status accompanied by an increased metabolic rate, elevated activity of antioxidant enzymes, decreased ionic conductivity of tissues and reduced stored energy reserves. Our experimental data reveal that hyperthyroidism is an adaptive characteristic enhancing the resistance to heavy metal contamination and shaping the evolution of these populations. The similarity of physiological, developmental and morphological changes in isolated populations suggests a common source and mechanisms underpinning this case of 'evolutionary rescue'. Thus, populations of S. malma trapped in volcanic streams represent a genuine case of rapid endocrine-driven adaptation to changing environmental stimuli.

3.
J Exp Biol ; 226(14)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37357638

RESUMO

Neotropical cichlids demonstrate an enormous diversity of pigment patterns, a morphological trait that plays an important role in adaptation and speciation. It has been suggested that alterations of the activity of the thyroid axis, one of the main endocrine axes regulating fish ontogeny, are involved in the development and diversification of pigment patterns in Neotropical cichlids. To test this hypothesis, we assessed thyroid hormone developmental dynamics and pigment patterning, and experimentally induced hyperthyroidism and hypothyroidism at different developmental stages in the convict cichlid, Amatitlania nigrofasciata, and blue-eye cichlid, Cryptoheros spilurus. We found that the two species display a similar type of coloration development and similar reactions to changes of thyroid hormone level, but species-specific differences in hormonal dynamics and thyroid hormone responsiveness. These findings indicate that thyroid hormone is a necessary but not sufficient signal to induce the transition from larval to juvenile coloration, and is a component of a complex, concerted endocrine cascade that drives skin development.


Assuntos
Ciclídeos , Animais , Ciclídeos/fisiologia , Hormônios Tireóideos , Adaptação Fisiológica
4.
Dev Dyn ; 251(11): 1816-1833, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35706124

RESUMO

BACKGROUND: The study of the teleosts' pectoral fin development touches on many crucial issues of evolutionary biology, from the formation of local adaptations to the tetrapod limbs' origin. Teleosts' pectoral fin is considered a rather developmentally and anatomically conservative structure. It displays larval and adult stages differing in the skeletal and soft tissues' composition. Larva-adult transition proceeds under the thyroid hormone (TH) control that defines pectoral fin ontogeny as an indirect development. However, the outstanding diversity of teleosts allows suggesting the existence of lineage specific developmental patterns. RESULTS: We present a description of the North African catfish, Clarias gariepinus, pectoral fin development. It lacks a clear larval stage and directly develops the adult skeleton with the associated musculature and innervation. Interestingly, the development of catfish pectoral fin appears not to be under the TH dependence. CONCLUSION: This catfish displays a direct pectoral fin developmental trajectory differing from the stereotyped teleost pattern. In the absence of the larval endoskeletal disk and TH control, the catfish's proximal radials arise in a manner somewhat similar to the metapterygial radials in basal actinopterygians and humerus in sarcopterygians. Thus, the catfish fin pattern seems homoplastic, arising by convergence with, or reversion to the ancestral developmental mechanisms.


Assuntos
Nadadeiras de Animais , Peixes-Gato , Animais , Extremidades , Larva , Esqueleto , Peixes
5.
J Anim Ecol ; 90(4): 1004-1019, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33481247

RESUMO

Adaptive radiation in fishes has been actively investigated over the last decades. Along with numerous well-studied cases of lacustrine radiation, some examples of riverine sympatric divergence have been recently discovered. In contrast to the lakes, the riverine conditions do not provide evident stability in the ecological gradients. Consequently, external factors triggering the radiation, as well as developmental mechanisms underpinning it, remain unclear. Herein, we present the comprehensive study of external and internal drivers of the riverine adaptive divergence of the salmonid fish Salvelinus malma. In the Kamchatka River, north-east Asia, this species splits in the reproductively isolated morphs that drastically differ in ecology and morphology: the benthivorous Dolly Varden (DV) and the piscivorous stone charr (SC). To understand why and how these morphs originated, we performed a series of field and experimental work, including common-garden rearing, comparative ontogenetic, physiological and endocrinological analyses, hormonal 'engineering' of phenotypes and acute toxicological tests. We revealed that the type of spawning ground acts as the decisive factor driving the radiation of S. malma. In contrast to DV spawning in the leaf krummholz zone, SC reproduces in the zone of coniferous forest, which litter has a toxic impact on developing fishes. SC enhances resistance to the toxicants via metabolism acceleration provided by the elevated thyroid hormone expenditure. These physiological changes lead to the multiple heterochronies resulting in a specific morphology and ecology of SC. Salvelinus malma represents a notable example of how the thyroid axis contributes to the generation of diverse phenotypic outcomes underlying the riverine sympatric divergence. Our findings, along with the paleoecology data concerning spruce forest distribution during the Pleistocene, provide an opportunity to reconstruct a scenario of S. malma divergence. Taken together, obtained results with the data of the role of thyroid hormones in the ontogeny and diversification of fishes contribute a resource to consider the thyroid axis as a prime director orchestrating the phenotypic plasticity promoting evolutionary diversification under the changing environmental conditions.


Assuntos
DNA Mitocondrial , Salmonidae , Animais , Lagos , Glândula Tireoide , Truta
6.
Evol Dev ; 21(1): 3-15, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239104

RESUMO

The Mesoamerican cichlids display a spectacular diversity of pigment patterns, which serve a variety of functions and serve as a strong selective trait for this lineage. The development and variation of coloration in the Mesoamerican cichlids have been detailed by several groups. In particular, Rícan, Musilová, Muska, and Novák () and Rícan, Piálek, Dragová, and Novák () determined homology of pattern and revealed four alternative types of coloration and their ontogeny. In this work, this group posed an "ontogenetic timing hypothesis" proposing heterochronic shifts underlying major transitions in the evolution of the Mesoamerican cichlids. Here, we experimentally test this hypothesis by experimentally altering timing of pigment pattern formation in the convict cichlid Amatitlania nigrofasciata, a member of the Mesoamerican cichlids, via manipulations of thyroid hormone (TH) function. The response of different pigment cell lineages to TH-perturbations revealed that the transition from larval to juvenile coloration in the convict cichlid is under the control of TH-signaling. Importantly, hormonally induced changes in the timing of pigment cell lineages' development resulted in shifts of coloration ontogeny type observed between lineages and led to the appearance of phenotypes mimicking those in phylogenetically close and distant species. Thus, our findings support the hypothesis that simple changes in ontogenetic timing underlies species specific patterns in pigmentation and provide new perspectives for studying the role of endocrine signaling in the evolution of cichlids.


Assuntos
Ciclídeos/genética , Ciclídeos/fisiologia , Pigmentação , Animais , Evolução Biológica , Ciclídeos/crescimento & desenvolvimento , Feminino , Masculino , Transdução de Sinais , Hormônios Tireóideos/metabolismo
7.
bioRxiv ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38712299

RESUMO

Recent adaptive radiations provide evolutionary case studies, which provide the context to parse the relationship between genomic variation and the origins of distinct phenotypes. Sympatric radiations of the charr complex (genus Salvelinus) present a trove for phylogenetics as charrs have repeatedly diversified into multiple morphs with distinct feeding specializations. However, species flocks normally comprise only two to three lineages. Dolly Varden charr inhabiting Lake Kronotske represent the most extensive radiation described for the charr genus, containing at least seven lineages, each with defining morphological and ecological traits. Here, we perform the first genome-wide analysis of this species flock to parse the foundations of adaptive change. Our data support distinct, reproductively isolated lineages with little evidence of hybridization. We also find that specific selection on thyroid signaling and craniofacial genes forms a genomic basis for the radiation. Thyroid hormone is further implicated in subsequent lineage partitioning events. These results delineate a clear genetic basis for the diversification of specialized lineages, and highlight the role of developmental mechanisms in shaping the forms generated during adaptive radiation.

8.
PLoS One ; 16(10): e0258536, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34653206

RESUMO

Factors and mechanisms promoting resource-based radiation in animals still represent a main challenge to evolutionary biology. The modifications of phenotype tied with adaptive diversification may result from an environmentally related shift having occurred at the early stage of development. Here, we study the role of temperature dynamics on the reproductive sites in the early-life divergence and adaptive radiation of the salmonid fish Salvelinus malma dwelling in the Lake Kronotskoe basin (North-East Asia). Local sympatric charr ecomorphs demonstrate strict homing behaviour guiding the preordained distribution along tributaries and, hence, further development under different temperatures. We thoroughly assessed the annual temperature dynamics at the spawning grounds of each morph as compared to an ancestral anadromous morph. Then we carried out an experimental rearing of both under naturally diverging and uniformed temperatures. To compare the morphs' development under the dynamically changing temperatures, we have designed a method based on calculating the accumulated heat by the Arrhenius equation. The proposed equation shows a strong predictive power and, at the same time, is not bias-susceptible when the developmental temperature approximates 0°C. The temperature was found to significantly affect the charrs' early ontogeny, which underlies the divergence of developmental and growth rates between the morphs, as well as morph-specific ontogenetic adaptations to the spawning site's temperatures. As opposed to the endemic morphs from Lake Kronotskoe, the anadromous S. malma, being unexposed to selection оn highly specific reproduction conditions, showed a wide temperature tolerance, Our findings demonstrate that the hatch, onset timing of external feeding, and size dissimilarities between the sympatric morphs reveal themselves during the development under contrast temperatures. As a result of the observed developmental disparities, the morphs occupy specific definitive foraging niches in the lake.


Assuntos
Adaptação Fisiológica , Salmonidae/crescimento & desenvolvimento , Animais , Ecossistema , Lagos , Salmonidae/fisiologia , Estações do Ano , Temperatura
9.
Ann Anat ; 230: 151507, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32173564

RESUMO

Limited gross anatomical information about the muscles of fins, in particular those of the median fins, creates substantial gaps in the comparative anatomy, homologies, and evolution of these muscles across fishes. The scarcity of data also makes it difficult to interpret results obtained in developmental studies done in model organisms, such as zebrafish. To overcome these gaps, we provide descriptions of the configuration of all appendicular muscles of Amia, median fins of Polypterus, and the dorsal and anal fins of Lepisosteus and Chondrostei. The musculature of other species, including sharks and sturgeons, is also revised. We describe muscles that were previously overlooked, report sexual dimorphism in the muscles of the anal fin of Polypterus, and reveal muscle variations within Polypterus males. Species dissected for the present study thus represent all major non-sarcopterygian extant clades of gnathostomes, i.e. Chondrichthyes, Polypteriformes, Chondrostei, Lepisosteiformes, Amiiformes and Teleostei. Moreover, we compare our observations with the relatively few works that have provided information about muscles of at least some fins of these taxa in order to provide a broad discussion on - and detailed schemes showing - the major evolutionary patterns within the appendicular musculature of these fishes. Such discussion provides an opportunity for a more comprehensive understanding of appendicular evolution and fish evolution in particular and of gnathostome and morphological evolution in general.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Evolução Biológica , Peixes/anatomia & histologia , Animais , Peixes/classificação , Tubarões/anatomia & histologia
10.
Sci Rep ; 9(1): 5413, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931985

RESUMO

The hypothalamus-pituitary-thyroid (HPT) axis plays a crucial role in the metabolism, homeostasis, somatic growth and development of teleostean fishes. Thyroid hormones regulate essential biological functions such as growth and development, regulation of stress, energy expenditure, tissue compound, and psychological processes. Teleost thyroid follicles produce the same thyroid hormones as in other vertebrates: thyroxin (T4) and triiodothyronine (T3), making the zebrafish a very useful model to study hypo- and hyperthyroidism in other vertebrate taxa, including humans. Here we investigate morphological changes in T3 hyperthyroid cases in the zebrafish to better understand malformations provoked by alterations of T3 levels. In particular, we describe musculoskeletal abnormalities during the development of the zebrafish appendicular skeleton and muscles, compare our observations with those recently done by us on the normal developmental of the zebrafish, and discuss these comparisons within the context of evolutionary developmental pathology (Evo-Devo-Path), including human pathologies.


Assuntos
Hipertireoidismo/fisiopatologia , Músculos/fisiologia , Desenvolvimento Musculoesquelético/fisiologia , Glândula Tireoide/fisiologia , Animais , Evolução Biológica , Padronização Corporal/fisiologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/fisiologia , Humanos , Hipertireoidismo/embriologia , Hipertireoidismo/metabolismo , Hipotálamo/embriologia , Hipotálamo/fisiologia , Larva/fisiologia , Modelos Animais , Músculos/embriologia , Sistema Musculoesquelético/embriologia , Hipófise/embriologia , Hipófise/fisiologia , Glândula Tireoide/embriologia , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Peixe-Zebra
11.
Sci Rep ; 8(1): 14187, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242203

RESUMO

The model organism Dario rerio (zebrafish) is widely used in evo-devo and comparative studies. Nevertheless, little is known about the development and differentiation of the appendicular musculature in this fish. In this study, we examined the development of the muscles of all five zebrafish fin types (pectoral, pelvic, anal, dorsal and caudal). We describe the development of the muscles of these fins, including some muscles that were never mentioned in the literature, such as the interhypurales of the caudal fin. Interestingly, these caudal muscles are present in early stages but absent in adult zebrafishes. We also compare various stages of zebrafish fin muscle development with the configuration found in other extant fishes, including non-teleostean actinopterygians as well as cartilaginous fishes. The present work thus provides a basis for future developmental, comparative, evolutionary and evo-devo studies and emphasizes the importance of developmental works on muscles for a more comprehensive understanding of the origin, development and evolution of the appendicular appendages of vertebrate animals.


Assuntos
Nadadeiras de Animais/crescimento & desenvolvimento , Peixe-Zebra/crescimento & desenvolvimento , Animais , Evolução Biológica , Extremidades/crescimento & desenvolvimento , Músculo Esquelético/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA