Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
RSC Adv ; 13(37): 25817-25827, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37655361

RESUMO

Composites comprising vanadium-pentoxide (V2O5) and single-walled carbon nanotubes (SWCNTs) are promising components for emerging applications in optoelectronics, solar cells, chemical and electrochemical sensors, etc. We propose a novel, simple, and facile approach for SWCNT covering with V2O5 by spin coating under ambient conditions. With the hydrolysis-polycondensation of the precursor (vanadyl triisopropoxide) directly on the surface of SWCNTs, the nm-thick layer of oxide is amorphous with a work function of 4.8 eV. The material recrystallizes after thermal treatment at 600 °C, achieving the work function of 5.8 eV. The key advantages of the method are that the obtained coating is uniform with a tunable thickness and does not require vacuuming or heating during processing. We demonstrate the groundbreaking results for two V2O5/SWCNT applications: transparent electrode and cathode for Li-ion batteries. As a transparent electrode, the composite shows stable sheet resistance of 160 Ω sq-1 at a 90% transmittance (550 nm) - the best performance reported for SWCNTs doped by metal oxides. As a cathode material, the obtained specific capacity (330 mA h g-1) is the highest among all the other V2O5/SWCNT cathodes reported so far. This approach opens new horizons for the creation of the next generation of metal oxide composites for various applications, including optoelectronics and electrochemistry.

2.
Adv Sci (Weinh) ; 9(12): e2200217, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35187847

RESUMO

Following the game-changing high-pressure CO (HiPco) process that established the first facile route toward large-scale production of single-walled carbon nanotubes, CO synthesis of cm-sized graphene crystals of ultra-high purity grown during tens of minutes is proposed. The Boudouard reaction serves for the first time to produce individual monolayer structures on the surface of a metal catalyst, thereby providing a chemical vapor deposition technique free from molecular and atomic hydrogen as well as vacuum conditions. This approach facilitates inhibition of the graphene nucleation from the CO/CO2 mixture and maintains a high growth rate of graphene seeds reaching large-scale monocrystals. Unique features of the Boudouard reaction coupled with CO-driven catalyst engineering ensure not only suppression of the second layer growth but also provide a simple and reliable technique for surface cleaning. Aside from being a novel carbon source, carbon monoxide ensures peculiar modification of catalyst and in general opens avenues for breakthrough graphene-catalyst composite production.

3.
J Phys Chem B ; 109(8): 3233-7, 2005 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16851346

RESUMO

The structure of MCM-48 mesoporous silicate materials has been fully characterized from X-ray diffraction data by applying recently developed methods of mesostructure analysis and full-profile refinement. The pore wall thickness of both as-made and calcined MCM-48 was determined with high precision to be 8.0(1) Angstrom. No regular variations of the wall thickness were detected, but its density was found to be ca. 10% higher in the low-curvature regions. The surfactant density in the pores was assessed around 0.6-0.7 g/cm(3) and was found to have a distinct minimum in the pore center similar to that detected previously in MCM-41. A new extended model function of the density distribution in MCM-48 is proposed on the basis of the structural features that were revealed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA