Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(45): 22821-22832, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636210

RESUMO

Infant maltreatment increases vulnerability to physical and mental disorders, yet specific mechanisms embedded within this complex infant experience that induce this vulnerability remain elusive. To define critical features of maltreatment-induced vulnerability, rat pups were reared from postnatal day 8 (PN8) with a maltreating mother, which produced amygdala and hippocampal deficits and decreased social behavior at PN13. Next, we deconstructed the maltreatment experience to reveal sufficient and necessary conditions to induce this phenotype. Social behavior and amygdala deficits (volume, neurogenesis, c-Fos, local field potential) required combined chronic high corticosterone and maternal presence (not maternal behavior). Hippocampal deficits were induced by chronic high corticosterone regardless of social context. Causation was shown by blocking corticosterone during maltreatment and suppressing amygdala activity during social behavior testing. These results highlight (1) that early life maltreatment initiates multiple pathways to pathology, each with distinct causal mechanisms and outcomes, and (2) the importance of social presence on brain development.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Hipocampo/fisiopatologia , Mães/psicologia , Comportamento Social , Estresse Fisiológico , Animais , Corticosterona/administração & dosagem , Corticosterona/sangue , Feminino , Ratos
2.
Bioinspir Biomim ; 11(2): 026003, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26891476

RESUMO

Recent progress in three-dimensional (3D) printing technology has enabled rapid prototyping of complex models at a limited cost. Virtually every research laboratory has access to a 3D printer, which can assist in the design and implementation of hypothesis-driven studies on animal behavior. In this study, we explore the possibility of using 3D printing technology to understand the role of body size in the social behavior of the zebrafish model organism. In a dichotomous preference test, we study the behavioral response of zebrafish to shoals of 3D printed replicas of varying size. We systematically vary the size of each replica without altering the coloration, aspect ratio, and stripe patterns, which are all selected to closely mimic zebrafish morphophysiology. The replicas are actuated through a robotic manipulator, mimicking the natural motion of live subjects. Zebrafish preference is assessed by scoring the time spent in the vicinity of the shoal of replicas, and the information theoretic construct of transfer entropy is used to further elucidate the influence of the replicas on zebrafish motion. Our results demonstrate that zebrafish adjust their behavior in response to variations in the size of the replicas. Subjects exhibit an avoidance reaction for larger replicas, and they are attracted toward and influenced by smaller replicas. The approach presented in this study, integrating 3D printing technology, robotics, and information theory, is expected to significantly aid preclinical research on zebrafish behavior.


Assuntos
Comportamento Animal/fisiologia , Biomimética/instrumentação , Tamanho Corporal/fisiologia , Impressão Tridimensional , Comportamento Social , Peixe-Zebra/fisiologia , Animais , Aglomeração , Desenho de Equipamento , Análise de Falha de Equipamento , Robótica/instrumentação , Comportamento Espacial/fisiologia , Especificidade da Espécie , Peixe-Zebra/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA