Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37762496

RESUMO

The discovery and isolation of new non-Bt insecticidal bacteria and genes are significant for the development of new biopesticides against coleopteran pests. In this study, we evaluated the insecticidal activity of non-Bt insecticidal bacteria, PPBiotE33, IPPBiotC41, IPPBiotA42 and IPPBiotC43, isolated from the peanut rhizosphere. All these strains showed insecticidal activity against first- and third-instar larvae of Holotrichia parallela, Holotrichia oblita, Anomala corpulenta and Potosia brevitarsis. IPPBiotE33 showed the highest toxicity among the four strains and exhibited virulence against Colaphellus bowringi. The genome of IPPBiotE33 was sequenced, and a new protein, 03673, with growth inhibition effects on C. bowringi was obtained. In addition, IPPBiotE33 had a synergistic effect with Bacillus thuringiensis Bt185 against H. parallela in bioassays and back-inoculation experiments with peanut seedlings. IPPBiotE33 induced a decrease in hemocytes and an increase in phenol oxidase activity in H. parallela hemolymph, known as the immunosuppressive effect, which mediated synergistic activity with Bt185. This study increased our knowledge of the new insecticidal strain IPPBiotE33 and shed new light on the research on new insecticidal coaction mechanisms and new blended pesticides.

2.
J Invertebr Pathol ; 169: 107296, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778713

RESUMO

Bacillus thuringiensis Cry1Ai belongs to three-domain Cry toxins and only shows growth inhibition effects against the agricultural pest Helicoverpa armigera, although it exhibits high toxicity against the non-target insect Bombyx mori. In previous studies, loop2 and loop3 on domain II from Cry1Ah were found to be related to binding and high toxicity against H. armigera. However, toxicity for B. mori of Cry1Ai-h-loop2, obtained by replacing loop 2 from Cry1Ah into Cry1Ai, was not modified. In this study, to further characterize the role of loop2 and loop3 in Cry1Ai, all of the amino acids in these two loops were substituted with the same amount of alanine residues. The Cry1Ai-loop3 mutant exhibited significantly lower toxicity against B. mori, but the toxicity of the loop2 mutant was not significantly changed. Furthermore, the double-exchange mutant Cry1Ai-h-loop2&3, replacing loop2 and loop3 from Cry1Ah into Cry1Ai, showed decreased toxicity against B. mori related to Cry1Ai. In addition, we found that the binding affinity of Cry1Ai-h-loop2&3 with brush border membrane vesicles (BBMVs) from the midgut of B. mori was lower than that of Cry1Ai, which correlates with the reduced toxicity.


Assuntos
Toxinas de Bacillus thuringiensis/química , Bacillus thuringiensis/química , Proteínas de Bactérias/química , Bombyx/efeitos dos fármacos , Endotoxinas/química , Proteínas Hemolisinas/química , Larva/efeitos dos fármacos , Animais , Bacillus thuringiensis/genética , Bombyx/crescimento & desenvolvimento , Controle de Insetos , Larva/crescimento & desenvolvimento , Controle Biológico de Vetores , Domínios Proteicos
3.
Arch Insect Biochem Physiol ; 102(3): e21558, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31094011

RESUMO

Coleoptera, the order of insects commonly referred to as beetles, are able to survive in various environments, and thus, comprise the largest order in the animal kingdom. Coleopterans mainly include coprophagous and phytophagous lineages, and many species of the latter lineage are serious pests. In addition to traditional chemical methods, biocontrol measures using various bacterial insecticidal proteins have also gradually been developed to control these insect pests. In this review, we summarized the possible coleopteran-pest-specific bacteria and insecticidal proteins that have been reported in the literature thus far and have provided a comprehensive overview and long-term guidance for the control of coleopteran pests in the future.


Assuntos
Proteínas de Bactérias , Besouros , Controle de Insetos/métodos , Animais , Agentes de Controle Biológico , Endotoxinas , Inseticidas , Plantas Geneticamente Modificadas
4.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29150505

RESUMO

Genetically modified crops that express insecticidal Bacillus thuringiensis (Bt) proteins have become a primary approach for control of lepidopteran (moth) and coleopteran (beetle) pests that feed by chewing the plants. However, the sap-sucking insects (Hemiptera) are not particularly susceptible to Bt toxins. In this study, we describe two Cry toxins (Cry64Ba and Cry64Ca) from Bt strain 1012 that showed toxicity against two important hemipteran rice pests, Laodelphax striatellus and Sogatella furcifera Both of these proteins contain an ETX/MTX2 domain and share common sequence features with the ß-pore-forming toxins. Coexpression of cry64Ba and cry64Ca genes in the acrystalliferous Bt strain HD73- resulted in high insecticidal activity against both hemipteran pests. No toxicity was observed on other pests such as Ostrinia furnacalis, Plutella xylostella, or Colaphellus bowringi Also, no hemolytic activity or toxicity against cancer cells was detected. Binding assays showed specific binding of the Cry64Ba/Cry64Ca toxin complex to brush border membrane vesicles isolated from L. striatellus Cry64Ba and Cry64Ca are Bt Cry toxins highly effective against hemipteran pests and could provide a novel strategy for the environmentally friendly biological control of rice planthoppers in transgenic plants.IMPORTANCE In Asia, rice is an important staple food, whose production is threatened by rice planthoppers. To date, no effective Bacillus thuringiensis (Bt) protein has been shown to have activity against rice planthoppers. We cloned two Bt toxin genes from Bt strain 1012 that showed toxicity against small brown planthoppers (Laodelphax striatellus) and white-backed planthoppers (Sogatella furcifera). To our knowledge, the proteins encoded by the cry64Ba and cry64Ca genes are the most efficient insecticidal Bt Cry proteins with activity against hemipteran insects reported so far. Cry64Ba and Cry64Ca showed no toxicity against some lepidopteran or coleopteran pests. These two proteins should be able to be used for integrated hemipteran pest management.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Endotoxinas/genética , Hemípteros/efeitos dos fármacos , Proteínas Hemolisinas/genética , Animais , Bacillus thuringiensis/química , Bacillus thuringiensis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Bioensaio , Clonagem Molecular , Endotoxinas/isolamento & purificação , Endotoxinas/farmacologia , Hemípteros/crescimento & desenvolvimento , Hemípteros/ultraestrutura , Proteínas Hemolisinas/isolamento & purificação , Proteínas Hemolisinas/farmacologia , Inseticidas , Controle Biológico de Vetores/métodos , Plantas Geneticamente Modificadas/genética
5.
J Invertebr Pathol ; 155: 5-13, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29723494

RESUMO

The goal of this work was to perform a systematic characterization of Bacillus thuringiensis (Bt) strains from the Bacillus Genetic Stock Center (BGSC) collection using Multi-Locus Sequence Typing (MLST). Different genetic markers of 158 Bacillus thuringiensis (Bt) strains from 73 different serovars stored in the BGSC, that represented 92% of the different Bt serovars of the BGSC were analyzed, the 8% that were not analyzed were not available. In addition, we analyzed 72 Bt strains from 18 serovars available at the pubMLST bcereus database, and Bt strains G03, HBF18 and Bt185, with no H serovars provided by our laboratory. We performed a systematic MLST analysis using seven housekeeping genes (glpF, gmK, ilvD, pta, pur, pycA and tpi) and analyzed correlation of the results of this analysis with strain serovars. The 233 Bt strains analyzed were assigned to 119 STs from which 19 STs were new. Genetic relationships were established by phylogenetic analysis and showed that STs could be grouped in two major Clusters containing 21 sub-groups. We found that a significant number of STs (101 in total) correlated with specific serovars, such as ST13 that corresponded to nine Bt isolates from B. thuringiensis serovar kenyae. However, other serovars showed high genetic variability and correlated with multiple STs; for example, B. thuringiensis serovar morrisoni correlated with 11 different STs. In addition, we found that 16 different STs correlated with multiple serovars (2-4 different serovars); for example, ST12 correlated with B. thuringiensis serovar alesti, dakota, palmanyolensis and sotto/dendrolimus. These data indicated that only partial correspondence between MLST and serotyping can be established.


Assuntos
Bacillus thuringiensis/classificação , Bacillus thuringiensis/genética , Técnicas de Tipagem Bacteriana/métodos , Tipagem de Sequências Multilocus/métodos , Sorotipagem/métodos , DNA Bacteriano/análise , Genes Bacterianos/genética , Filogenia
6.
J Invertebr Pathol ; 158: 1-5, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30017953

RESUMO

Transgenic plants expressing insecticidal proteins originating from Bacillus thuringiensis (Bt) have successfully been used to control lepidopteran and coleopteran pests with chewing mouthparts. However, only a handful of Bt proteins have been identified that have bioactivity against sap sucking pests (Hemiptera), including aphids, whiteflies, plant bugs and planthoppers. A novel Bt insecticidal protein with significant toxicity against a hemipteran insect pest is described here. The gene encoding the 359 amino acid, 40.7 kDa protein was cloned from strain C9F1. After expression and purification of the toxin, its median lethal concentration (LC50) values against Laodelphax striatellus and Nilaparvata lugens were determined as 6.89 µg/mL and 15.78 µg/mL respectively. Analysis of the toxin sequence revealed the presence of both Toxin_10 and Ricin_B_Lectin domains.


Assuntos
Bacillus thuringiensis/genética , Toxinas Bacterianas/genética , Hemípteros , Controle Biológico de Vetores/métodos , Plantas Geneticamente Modificadas/genética , Animais
7.
Appl Environ Microbiol ; 83(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28389549

RESUMO

The Bacillus thuringiensis strain HBF-18 (CGMCC 2070), containing two cry genes (cry8-like and cry8Ga), is toxic to Holotrichia oblita larvae. Both Cry8-like and Cry8Ga proteins are active against this insect pest, and Cry8-like is more toxic. To analyze the characteristics of the binding of Cry8-like and Cry8Ga proteins to brush border membrane vesicles (BBMVs) in H. oblita larvae, binding assays were conducted with a fluorescent DyLight488-labeled Cry8-like toxin. The results of saturation binding assays demonstrated that Cry8-like bound specifically to binding sites on BBMVs from H. oblita, and heterologous competition assays revealed that Cry8Ga shared binding sites with Cry8-like. Furthermore, Cry8-like-binding proteins in the midgut from H. oblita larvae were identified by pulldown assays and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, the H. oblita midgut transcriptome was assembled by high-throughput RNA sequencing and used for identification of Cry8-like-binding proteins. Eight Cry8-like-binding proteins were obtained from pulldown assays conducted with BBMVs. The LC-MS/MS data for these proteins were successfully matched with the H. oblita transcriptome, and BLASTX results identified five proteins as serine protease, transferrin-like, uncharacterized protein LOC658236 of Tribolium castaneum, ATPase catalytic subunit, and actin. These identified Cry8-like-binding proteins were different from those confirmed previously as receptors for Cry1A proteins in lepidopteran insect species, such as aminopeptidase, alkaline phosphatase, and cadherin.IMPORTANCEHolotrichia oblita is one of the main soil-dwelling pests in China. The larvae damage the roots of crops, resulting in significant yield reductions and economic losses. H. oblita is difficult to control, principally due to its soil-dwelling habits. In recent years, some Cry8 toxins from Bacillus thuringiensis were shown to be active against this pest. Study of the mechanism of action of these Cry8 toxins is needed for their effective use in the control of H. oblita and for their future utilization in transgenic plants. Our work provides important basic data and promotes understanding of the insecticidal mechanism of Cry8 proteins against H. oblita larvae.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Besouros/metabolismo , Besouros/microbiologia , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Insetos/metabolismo , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Besouros/química , Besouros/genética , Endotoxinas/genética , Trato Gastrointestinal/química , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Proteínas Hemolisinas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/química , Proteínas de Insetos/genética , Larva/química , Larva/genética , Larva/metabolismo , Larva/microbiologia , Ligação Proteica , Espectrometria de Massas em Tandem , Transcriptoma
8.
J Invertebr Pathol ; 150: 35-40, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28888766

RESUMO

A PCR-RFLP method was used to identify cry2A toxin genes in a collection of 300 strains of Bacillus thuringiensis. From 81 genes identified, the vast majority appeared to be cry2Aa or cry2Ab, however three showed a different pattern and were subsequently cloned and sequenced. The gene cloned from strain HD395 was named cry2Ba2. Since the proteins encoded by the genes cloned from LS5115-3 and DS415 shared >95% sequence identity with existing toxins their genes were named cry2Aa17 and cry2Ab29 respectively by the toxin nomenclature committee. Despite this overall similarity these two toxins resembled natural hybrids, with Cry2Ab29 resembling Cry2Ab for the majority of the protein but then showing identity to Cry2Aa for the last 66 amino acids. For Cry2Aa17, Domains II and III most closely resembled Cry2Aa (99% identity) whilst Domain I was identical to that of Cry2Ab. The toxicity of the recombinant toxins was tested against Aedes aegypti and Spodoptera exigua, and it was found that the toxicity profile of Cry2Aa17 more closely matched the profile of Cry2Ab than that of Cry2Aa, thus implicating Domain I in specificity determination. This association of Domain I with toxicity was confirmed when hybrids were made between Cry2Aa and Cry2Ab.


Assuntos
Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Aedes , Animais , Toxinas de Bacillus thuringiensis , Bioensaio , Clonagem Molecular
9.
Appl Environ Microbiol ; 82(13): 3808-3815, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27084017

RESUMO

UNLABELLED: With the aim of optimizing the cloning of novel genes from a genomic pool containing many previously identified homologous genes, we designed a redundant exclusion PCR (RE-PCR) technique. In RE-PCR, a pair of generic amplification primers are combined with additional primers that are designed to specifically bind to redundant, unwanted genes that are a subset of those copied by the amplification primers. During RE-PCR, the specific primer blocks amplification of the full-length redundant gene. Using this method, we managed to clone a number of cry8 or cry9 toxin genes from a pool of Bacillus thuringiensis genomic DNA while excluding amplicons for cry9Da, cry9Ea, and cry9Eb The method proved to be very efficient at increasing the number of rare genes in the resulting library. One such rare (and novel) cry8-like gene was expressed, and the encoded toxin was shown to be toxic to Anomala corpulenta IMPORTANCE: Protein toxins from the bacterium Bacillus thuringiensis are being increasingly used as biopesticides against a wide range of insect pests, yet the search for new or improved toxins is becoming more difficult, as traditional methods for gene discovery routinely isolate previously identified clones. This paper describes an approach that we have developed to increase the success rate for novel toxin gene identification through reducing or eliminating the cloning of previously characterized genes.


Assuntos
Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Endotoxinas/genética , Endotoxinas/isolamento & purificação , Estudos de Associação Genética/métodos , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Bioensaio , Clonagem Molecular , Besouros/efeitos dos fármacos , Primers do DNA/genética , Endotoxinas/toxicidade , Expressão Gênica , Proteínas Hemolisinas/toxicidade
10.
BMC Plant Biol ; 15: 161, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26112452

RESUMO

BACKGROUND: Genes with different functions are originally generated from some ancestral genes by gene duplication, mutation and functional recombination. It is widely accepted that orthologs are homologous genes evolved from speciation events while paralogs are homologous genes resulted from gene duplication events.With the rapid increase of genomic data, identifying and distinguishing these genes among different species is becoming an important part of functional genomics research. DESCRIPTION: Using 35 plant and 6 green algal genomes from Phytozome v9, we clustered 1,291,670 peptide sequences into 49,355 homologous gene families in terms of sequence similarity. For each gene family, we have generated a peptide sequence alignment and phylogenetic tree, and identified the speciation/duplication events for every node within the tree. For each node, we also identified and highlighted diagnostic characters that facilitate appropriate addition of a new query sequence into the existing phylogenetic tree and sequence alignment of its best matched gene family. Based on a desired species or subgroup of all species, users can view the phylogenetic tree, sequence alignment and diagnostic characters for a given gene family selectively. PlantOrDB not only allows users to identify orthologs or paralogs from phylogenetic trees, but also provides all orthologs that are built using Reciprocal Best Hit (RBH) pairwise alignment method. Users can upload their own sequences to find the best matched gene families, and visualize their query sequences within the relevant phylogenetic trees and sequence alignments. CONCLUSION: PlantOrDB ( http://bioinfolab.miamioh.edu/plantordb ) is a genome-wide ortholog database for land plants and green algae. PlantOrDB offers highly interactive visualization, accurate query classification and powerful search functions useful for functional genomic research.


Assuntos
Proteínas de Algas/genética , Clorófitas/genética , Bases de Dados de Ácidos Nucleicos/organização & administração , Embriófitas/genética , Genoma de Planta , Proteínas de Plantas/genética , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Clorófitas/metabolismo , Embriófitas/metabolismo , Evolução Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
11.
Appl Microbiol Biotechnol ; 99(2): 753-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25081556

RESUMO

The Bacillus thuringiensis strain HBF-18 (CGMCC 2070), which has previously been shown to encode the cry8Ga toxin gene, is active against both Holotrichia oblita and Holotrichia parallela. Recombinant Cry8Ga however is only weakly toxic to these insect pests suggesting the involvement of additional toxins in the native strain. We report that through the use of Illumina sequencing three additional, and novel, genes, namely vip1Ad1, vip2Ag1, and cry8-like, were identified in this strain. Although no protein corresponding to these genes could be identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the HBF-18 proteome, reverse transcription (RT)-PCR indicated that all three genes were transcribed in the native strain. The two vip genes were cloned and expressed and, as with other Vip1/2 toxins, appeared to function as a binary toxin and showed strong activity against H. oblita, H. parallela and Anomala corpulenta. This is the first report to demonstrate that the Vip1/Vip2 binary toxin is active against these Scarabaeoidea larvae. The cry8-like gene appeared to be a C-terminally truncated form of a typical cry8 gene and was not expressed in our usual recombinant Bt expression system. When however the missing C-terminal region was replaced with the corresponding sequence from cry8Ea, the resulting hybrid expressed well and the toxin was active against the three test insects.


Assuntos
Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Besouros/efeitos dos fármacos , Endotoxinas/genética , Proteínas Hemolisinas/genética , Animais , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/biossíntese , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Endotoxinas/biossíntese , Escherichia coli , Proteínas Hemolisinas/biossíntese , Larva/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA
12.
Appl Microbiol Biotechnol ; 99(17): 7209-18, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26135984

RESUMO

Holotrichia parallela is one of the most severe crop pests in China, affecting peanut, soybean, and sweet potato crops. Previous work showed that Cry8Ea toxin is highly effective against this insect. In order to identify Cry8Ea-binding proteins in the midgut cells of H. parallela larvae, we assembled a midgut tissue transcriptome by high-throughput sequencing and used this assembled transcriptome to identify Cry8Ea-binding proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS). First, we obtained de novo sequences of cDNAs from midgut tissue of H. parallela larvae and used available cDNA data in the GenBank. In a parallel assay, we obtained 11 Cry8Ea-binding proteins by pull-down assays performed with midgut brush border membrane vesicles. Peptide sequences from these proteins were matched to the H. parallela newly assembled midgut transcriptome, and 10 proteins were identified. Some of the proteins were shown to be intracellular proteins forming part of the cell cytoskeleton and/or vesicle transport such as actin, myosin, clathrin, dynein, and tubulin among others. In addition, an apolipophorin, which is a protein involved in lipid metabolism, and a novel membrane-bound alanyl aminopeptidase were identified. Our results suggest that Cry8Ea-binding proteins could be different from those characterized for Cry1A toxins in lepidopteran insects.


Assuntos
Proteínas de Bactérias/metabolismo , Besouros/efeitos dos fármacos , Endotoxinas/metabolismo , Perfilação da Expressão Gênica , Proteínas Hemolisinas/metabolismo , Animais , Arachis/parasitologia , Toxinas de Bacillus thuringiensis , Centrifugação , China , Cromatografia Líquida , Trato Gastrointestinal/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Ipomoea batatas/parasitologia , Larva/efeitos dos fármacos , Ligação Proteica , Glycine max/parasitologia , Espectrometria de Massas em Tandem
13.
Plant Cell Physiol ; 55(10): 1793-801, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25231965

RESUMO

Peanut (Arachis hypogaea L.), one of the most important oil legumes in the world, is heavily damaged by white grubs. Tissue-specific promoters are needed to incorporate insect resistance genes into peanut by genetic transformation to control the subterranean pests. Transcriptome sequencing is the most effective way to analyze differential gene expression in this non-model species and contribute to promoter cloning. The transcriptomes of the roots, seeds and leaves of peanut were sequenced using Illumina technology. A simple digital expression profile was established based on number of transcripts per million clean tags (TPM) from different tissues. Subsequently, 584 root-specific candidate transcript assembly contigs (TACs) and 316 seed-specific candidate TACs were identified. Among these candidate TACs, 55.3% were root-specific and 64.6% were seed-specific by semi-quantitative RT-PCR analysis. Moreover, the consistency of semi-quantitative RT-PCR with the simple digital expression profile was correlated with the length and TPM value of TACs. The results of gene ontology showed that some root-specific TACs are involved in stress resistance and respond to auxin stimulus, whereas, seed-specific candidate TACs are involved in embryo development, lipid storage and long-chain fatty acid biosynthesis. One root-specific promoter was cloned and characterized. We developed a high-yield screening system in peanut by establishing a simple digital expression profile based on Illumina sequencing. The feasible and rapid method presented by this study can be used for other non-model crops to explore tissue-specific or spatially specific promoters.


Assuntos
Arachis/genética , Clonagem Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Regiões Promotoras Genéticas , Transcriptoma
14.
Appl Microbiol Biotechnol ; 98(18): 7901-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24928660

RESUMO

To optimize the expression of cry genes in a Bacillus thuringiensis sigK mutant failing in crystal releasing, the transcriptional activity of the cry promoters cry1A, cry3A, cry4A, and cry8E was compared using lacZ gene fusions. A beta-galactosidase assay indicated that the cry8E promoter showed the highest transcriptional activity. A novel Escherichia coli-B. thuringiensis shuttle vector pHT315-8E21b was constructed for cry gene expression using the cry8E promoter and the multiple cloning sites from vector pET21b, based on vector pHT315. SDS-PAGE analysis showed that the expression of the cry1Ac gene directed by the cry8E promoter was increased by approximately 2.4-fold over the expression directed by the cry3A promoter. The cry1Ba gene was expressed in the sigK mutant with the constructed vector pHT315-8E21b. Normal bipyramidal crystals encapsulated in mother cell were observed by transmission electron microscopy (TEM). The encapsulated Cry1Ba protein expressed in the sigK mutant showed activity against Ostrinia furnacalis and Plutella xylostella similar to that of the released Cry1Ba protein expressed in the acrystalliferous strain HD73 and can be protected from inactivation by UV light. All these results suggest that the cry8E promoter can be an efficient transcriptional element for cry gene expression in sigK mutants and can be utilized for the construction of a genetically engineered strain.


Assuntos
Bacillus thuringiensis/metabolismo , Regiões Promotoras Genéticas/genética , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Endotoxinas/genética , Endotoxinas/metabolismo , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Lepidópteros/efeitos dos fármacos , Microscopia Eletrônica de Transmissão
15.
J Invertebr Pathol ; 122: 6-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25108136

RESUMO

There has been considerable effort made in recent years for research groups and other organizations to build up large collections of strains of Bacillus thuringiensis in the search for genes encoding novel insecticidal toxins, or encoding novel metabolic pathways. Whilst next generation sequencing allows the detailed genetic characterization of a bacterial strain with relative ease it is still not practicable for large strain collections. In this work we assess the practicability of mining a mixture of genomic DNA from a two thousand strain collection for particular genes. Using PCR the collection was screened for both a rare (cry15) toxin gene as well as a more commonly found gene (vip3A). The method was successful in identifying both a cry15 gene and multiple examples of the vip3A gene family including a novel member of this family (vip3Aj). A number of variants of vip3Ag were cloned and expressed, and differences in toxicity observed despite extremely high sequence similarity.


Assuntos
Bacillus thuringiensis/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
16.
World J Microbiol Biotechnol ; 30(12): 3075-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25218711

RESUMO

Bacillus thuringiensis (Bt) is the most widely used insecticidal microbe due to its specific toxicity and safe use with respect to animals and the environment. In this study, we isolated Bt strain Q52-7 from a soil sample collected in the Qian Shan District, Liao Ning Province, China. We observed that the Q52-7 strain produced spherical crystals. The Bt Q52-7 strain had high toxicity against Asian Cockchafer (Holotrichia parallela), exhibiting an LC50 of 3.80 × 10(9) cfu/g, but is not toxic for Anomala corpulenta Motschulsky and Holotrichia oblita. Using general cry8 primers, we amplified a 1.3 kb fragment with the polymerase chain reaction. Specific primers were designed for the amplified fragment to clone the full-length coding region. A novel gene, cry8Na1, had 69 % sequence similarity with cry8Ca1. cry8Na1 gene was successfully expressed in the HD-73(-) acrystalliferous mutant of Bt subsp. Kurstaki HD-73. Bioassays demonstrated that the Cry8Na1 protein is highly toxic for the H. parallela, with a 50 % lethal concentration of 8.18 × 10(10) colony forming units per gram.


Assuntos
Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Endotoxinas/genética , Endotoxinas/toxicidade , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Animais , Bacillus thuringiensis/citologia , Bacillus thuringiensis/isolamento & purificação , Toxinas de Bacillus thuringiensis , Bioensaio , China , Clonagem Molecular , Análise por Conglomerados , Besouros/efeitos dos fármacos , DNA Bacteriano/química , DNA Bacteriano/genética , Expressão Gênica , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Homologia de Sequência , Microbiologia do Solo , Análise de Sobrevida
17.
World J Microbiol Biotechnol ; 30(2): 595-603, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24030167

RESUMO

Cry8Ea1 from Bacillus thuringiensis strain Bt185 has insecticidal activity against Holotrichia parallela. Cry8Ca2 from strain HBF-1 is effective against Anomala corpulenta. Cry8Ga1 from strain HBF-18 is toxic to H. oblita. Given the need to broaden the spectrum of B. thuringiensis, a broad-spectrum coleopteran active strain of B. thuringiensis, BIOT185, engineered to express multiple cry genes, including cry8Ea1, cry8Fa1 and cry8Ca2, was created by homologous recombination introducing the cry8Ca2 into the B. thuringiensis strain Bt185 by Liu et al. (Appl Microbiol Biotechnol 87:243-249, 2010). To further broaden the spectrum, an engineered B. thuringiensis strain BIOT1858G was constructed by introducing the recombinant plasmid pSTK-8G containing cry8Ga1 into the engineered B. thuringiensis strain BIOT185. PCR and Southern blotting demonstrated that the cry8Ga1 gene was transferred to the novel strain BIOT1858G. SDS-PAGE and RT-PCR confirmed the normal expression and transcription of the cry8Ga1 gene in addition to the cry8Ea1, cry8Fa1 and cry8Ca2 genes. Bioassays of BIOT1858G indicated that the recombinant strain broadened the spectrum against not only H. parallela susceptible to the Cry8E protein and A. corpulenta susceptible to the Cry8C protein but also H. oblita susceptible to the Cry8G protein. The pesticide could also decrease the cost of production and field labor.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Besouros/microbiologia , Besouros/fisiologia , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Organismos Geneticamente Modificados/metabolismo , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/crescimento & desenvolvimento , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Bioensaio , Endotoxinas/genética , Proteínas Hemolisinas/genética , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/crescimento & desenvolvimento , Análise de Sobrevida
18.
Toxins (Basel) ; 16(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38787067

RESUMO

Bacillus thuringiensis (Bt) secretes the nutritional insecticidal protein Vip3Aa11, which exhibits high toxicity against the fall armyworm (Spodoptera frugiperda). The Bt HD270 extracellular polysaccharide (EPS) enhances the toxicity of Vip3Aa11 protoxin against S. frugiperda by enhancing the attachment of brush border membrane vesicles (BBMVs). However, how EPS-HD270 interacts with Vip3Aa11 protoxin in vivo and the effect of EPS-HD270 on the toxicity of activated Vip3Aa11 toxin are not yet clear. Our results indicated that there is an interaction between mannose, a monosaccharide that composes EPS-HD270, and Vip3Aa11 protoxin, with a dissociation constant of Kd = 16.75 ± 0.95 mmol/L. When EPS-HD270 and Vip3Aa11 protoxin were simultaneously fed to third-instar larvae, laser confocal microscopy observations revealed the co-localization of the two compounds near the midgut wall, which aggravated the damage to BBMVs. EPS-HD270 did not have a synergistic insecticidal effect on the activated Vip3Aa11 protein against S. frugiperda. The activated Vip3Aa11 toxin demonstrated a significantly reduced binding capacity (548.73 ± 82.87 nmol/L) towards EPS-HD270 in comparison to the protoxin (34.96 ± 9.00 nmol/L). Furthermore, this activation diminished the affinity of EPS-HD270 for BBMVs. This study provides important evidence for further elucidating the synergistic insecticidal mechanism between extracellular polysaccharides and Vip3Aa11 protein both in vivo and in vitro.


Assuntos
Proteínas de Bactérias , Polissacarídeos Bacterianos , Spodoptera , Animais , Proteínas de Bactérias/toxicidade , Proteínas de Bactérias/metabolismo , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/química , Spodoptera/efeitos dos fármacos , Larva/efeitos dos fármacos , Inseticidas/toxicidade , Inseticidas/farmacologia , Bacillus thuringiensis/metabolismo , Microvilosidades/metabolismo , Microvilosidades/efeitos dos fármacos
19.
Front Microbiol ; 15: 1385734, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812691

RESUMO

Protaetia brevitarsis larvae (PBL) are soil insects important for the soil organic carbon cycle, and PBL frass not only contains a large amount of humic acid but also affects the diversity, novelty, and potential functions of actinomycetes. Here, we characterized and assessed the actinomycete. The operational taxonomic unit (OTU) data showed that 90% of the actinomycetes cannot be annotated to species, and pure culture and genome analysis showed that 35% of the strains had the potential to be new species, indicating the novelty of PBL frass actinomycetes. Additionally, genome annotation showed that many gene clusters related to antifungal, antibacterial and insecticidal compound synthesis were identified, and confrontation culture confirmed the antifungal activities of the actinomycetes against soil-borne plant pathogenic fungi. The incubation experiment results showed that all isolates were able to thrive on media composed of straw powder and alkaline lignin. These results indicated that PBL hindgut-enriched actinomycetes could survive in soil by using the residual lignocellulose organic matter from plant residues, and the antibiotics produced not only give them a competitive advantage among soil microflora but also have a certain inhibitory effect on plant diseases and pests. This study suggests that the application of PBL frass can not only supplement soil humic acid but also potentially affect the soil microbiota of cultivated land, which is beneficial for the healthy growth of crops.

20.
Pest Manag Sci ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940437

RESUMO

BACKGROUND: Bacillus thuringiensis (Bt) is a Gram-positive bacterium that produces various insecticidal proteins used to control insect pests. Spodoptera frugiperda is a global insect pest which causes serious damage to crops, but bio-insecticides currently available to control this pest have limited activity and so new ones are always being sought. In this study we have tested the hypothesis that a biomarker for strain toxicity could be found that would greatly facilitate the identification of new potential products. RESULTS: Using genomic sequencing data we constructed a linkage network of insecticidal genes from 1957 Bt genomes and found that four gene families, namely cry1A, cry1I, cry2A and vip3A, showed strong linkage. For 95 strains isolated from soil samples we assayed them for toxicity towards S. frugiperda and for the presence of the above gene families. All of the strains that showed high toxicity also contained a member of the vip3A gene family. Two of them were more toxic than a commercially available strain and genomic sequencing identified a number of potentially novel toxin-encoding genes. CONCLUSIONS: The presence of a vip3A gene in the genome of a Bt strain proved to be a strong indicator of toxicity towards S. frugiperda validating this biomarker approach as a strategy for future discovery programs. © 2024 Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA