Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(11): 5012-5019, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38438970

RESUMO

The concept of high-entropy oxides has triggered extensive research of this novel class of materials because their numerous functional properties are usually not mere linear combinations of those of the components. Here, we introduce the new series of compositionally complex honeycomb-layered magnets Na3-xLixT2SbO6 (T = Cu1/3Ni1/3Co1/3). An unusual feature of the system is its nonmonotonous dependences of the monoclinic lattice parameters b and ß on x. Rietveld refinement of the crystal structures of the Na and Li end members reveals apparent Sb-T site inversion in the former and considerable Li-Cu site inversion in the latter. The materials are characterized by measurements of specific heat Cp, magnetization M, and ac and dc magnetic susceptibility χ. Na3T2SbO6 exhibits sharp long-range antiferromagnetic order (TN = 10.2 K) preceded by noticeable correlation effects at elevated temperatures. The magnetic phase diagram of Na3T2SbO6 is established. Introduction of Li, just at x = 0.8, destroys AFM order, resulting in spin-cluster glass behavior attributed to Li/Cu inversion, with TG growing with x to 10.4 K at x = 3.

2.
Inorg Chem ; 58(9): 5524-5532, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30995026

RESUMO

We report the first four magnetic representatives of the trigonal layered A2M(4+)TeO6 (here, M = Mn) family. Na2MnTeO6 was synthesized from NaMnO2, NaNO3, and TeO2 at 650-720 °C, but analogues for which A = Li and K could not be obtained by direct synthesis. However, those for which A = Li, Ag, and Tl (but not K) were prepared by exchange reactions between Na2MnTeO6 and the corresponding molten nitrates. The oxygen content was verified by redox titration. According to the X-ray diffraction Rietveld analysis, the four new compounds are isostructural with Na2GeTeO6, trigonal ( P3̅1 c), based on ilmenite-like layers of edge-shared oxygen octahedra occupied by Mn(4+) and Te(6+) in an ordered manner. These layers are separated by cations A, also in a distorted octahedral coordination. However, off-center displacement of Tl+ is so strong, due to the lone-pair effect, that its coordination is better described as trigonal pyramid. Each MnO6 octahedron shares two opposite faces with AO6 octahedra, whereas TeO6 octahedra avoid sharing faces. Besides this double-layered structure, Na2MnTeO6 was often accompanied by a transient triple-layered rhombohedral polytype. However, it could not be prepared as a single phase and disappeared on annealing at 700-720 °C. All A2MnTeO6 samples (A = Ag, Li, Na, or Tl) revealed the unusual phenomenon of hidden magnetic order. Low-field magnetic susceptibility data exhibit a Curie-Weiss type behavior for all samples under study and do not show any sign of the establishment of long-range magnetic order down to 2 K. In contrast, both the magnetic susceptibility in sufficiently high external magnetic fields and the zero-field specific heat unambiguously revealed an onset of antiferromagnetic order at low temperatures. The frustration index f = Θ/ TN takes values larger than the classical values for three-dimensional antiferromagnets and implies moderate frustration on the triangular lattice.

3.
Inorg Chem ; 56(22): 14023-14039, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29087200

RESUMO

Four new manganese germanates and silicates, A2MnGeO4 (A = Li, Na) and A2MnSiO4 (A = Na, Ag), were prepared, and their crystal structures were determined using the X-ray Rietveld method. All of them contain all components in tetrahedral coordination. Li2MnGeO4 is orthorhombic (Pmn21) layered, isostructural with Li2CdGeO4, and the three other compounds are monoclinic (Pn) cristobalite-related frameworks. As in other stuffed cristobalites of various symmetry (Pn A2MXO4, Pna21 and Pbca AMO2), average bond angles on bridging oxygens (here, Mn-O-X) increase with increasing A/X and/or A/M radius ratios, indicating the trend to the ideal cubic (Fd3̅m) structure typified by CsAlO2. The sublattices of the magnetic Mn2+ ions in both structure types under study (Pmn21 and Pn) are essentially the same; namely, they are pseudocubic eutaxy with 12 nearest neighbors. The magnetic properties of the four new phases plus Li2MnSiO4 were characterized by carrying out magnetic susceptibility, specific heat, magnetization, and electron spin resonance measurements and also by performing energy-mapping analysis to evaluate their spin exchange constants. Ag2MnSiO4 remains paramagnetic down to 2 K, but A2MnXO4 (A = Li, Na; X = Si, Ge) undergo a three-dimensional antiferromagnetic ordering. All five phases exhibit short-range AFM ordering correlations, hence showing them to be low-dimensional magnets and a magnetic field induced spin-reorientation transition at T < TN for all AFM phases. We constructed the magnetic phase diagrams for A2MnXO4 (A = Li, Na; X = Si, Ge) on the basis of the thermodynamic data in magnetic fields up to 9 T. The magnetic properties of all five phases experimentally determined are well explained by their spin exchange constants evaluated by performing energy-mapping analysis.

4.
Inorg Chem ; 54(4): 1705-11, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25622135

RESUMO

A new layered trigonal (P3̅1m) form of MnSb2O6, isostructural with MSb2O6 (M = Cd, Ca, Sr, Pb, and Ba) and MAs2O6 (M = Mn, Co, Ni, and Pd), was prepared by ion-exchange reaction between ilmenite-type NaSbO3 and MnSO4-KCl-KBr melt at 470 °C. It is characterized by Rietveld analysis of the X-ray diffraction pattern, electron microprobe analysis, magnetic susceptibility, specific heat, and ESR measurements as well as by density functional theory calculations. MnSb2O6 is very similar to MnAs2O6 in the temperature dependence of their magnetic susceptibility and spin exchange interactions. The magnetic susceptibility and specific heat data show that MnSb2O6 undergoes a long-range antiferromagnetic order with Néel temperature TN = 8.5(5) K. In addition, a weak ferromagnetic component appears below T1 = 41.5(5) K. DFT+U implies that the main spin exchange interactions are antiferromagnetic, thereby forming spin-frustrated triangles. The long-range ordered magnetic structure of MnSb2O6 is predicted to be incommensurate as found for MnAs2O6. On heating, the new phase transforms to the stable P321 form via its intermediate disordered variant.

5.
Inorg Chem ; 52(20): 11850-8, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24090277

RESUMO

A new orthorhombic phase, MnCrO4, isostructural with MCrO4 (M = Mg, Co, Ni, Cu, Cd) was prepared by evaporation of an aqueous solution, (NH4)2Cr2O7 + 2 Mn(NO3)2, followed by calcination at 400 °C. It is characterized by redox titration, Rietveld analysis of the X-ray diffraction pattern, Cr K edge and Mn K edge XANES, ESR, magnetic susceptibility, specific heat and resistivity measurements. In contrast to the high-pressure MnCrO4 phase where both cations are octahedral, the new phase contains Cr in a tetrahedral environment suggesting the charge balance Mn(2+)Cr(6+)O4. However, the positions of both X-ray absorption K edges, the bond lengths and the ESR data suggest the occurrence of some mixed-valence character in which the mean oxidation state of Mn is higher than 2 and that of Cr is lower than 6. Both the magnetic susceptibility and the specific heat data indicate an onset of a three-dimensional antiferromagnetic order at TN ≈ 42 K, which was confirmed also by calculating the spin exchange interactions on the basis of first principles density functional calculations. Dynamic magnetic studies (ESR) corroborate this scenario and indicate appreciable short-range correlations at temperatures far above TN. MnCrO4 is a semiconductor with activation energy of 0.27 eV; it loses oxygen on heating above 400 °C to form first Cr2O3 plus Mn3O4 and then Mn1.5Cr1.5O4 spinel.

6.
Inorg Chem ; 51(9): 4931-7, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22494264

RESUMO

A new compound with brucite-like layers, K(0.72)Li(0.24)Sn(0.76)O(2), has been obtained two ways, via solid-state reactions: with a big excess of KOH and in a controllable atmosphere without water and carbon dioxide. It has P2 structure (in Hagenmuller's definition) as previously described for K(0.70)Zn(0.35)Sn(0.65)O(2). The latter compound has been repeatedly prepared using the new technique presented here. The structure was refined using powder X-ray profile analysis. Lithium cations are disordered with tin (+4) in the rigid part and introduce "acid" properties. Both types of potassium positions are split. The metastable P3 phase also appears in the K(2)O-Li(2)O-SnO(2) system. The sodium analogue Na(0.72)Li(0.24)Sn(0.76)O(2) with P2 structure has been prepared using an ion-exchange technique.

7.
Nanomaterials (Basel) ; 11(1)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435502

RESUMO

Electrochemical characterization of the novel sodium iron titanate Na0.9Fe0.45Ti1.55O4 was performed upon cycling in the Li-ion half-cell. The material exhibited stable cycling in the voltage range 2-4.5 V, and the number of alkali ions extracted per formula unit was approximately half of the Na stoichiometry value. Using laboratory X-ray absorption spectrometry, we measured operando Fe K-edge X-ray absorption spectra in the first 10 charge-discharge cycles and quantified the portion of charge associated with the transition metal redox reaction. Although 3d metals are commonly accepted redox-active centers in the intercalation process, we found that in all cycles the amount of oxidized and reduced Fe ions was almost 20% less than the total number of transferred electrons. Using density functional theory (DFT) simulations, we show that part of the reversible capacity is related to the redox reaction on oxygen ions.

8.
Materials (Basel) ; 14(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34832185

RESUMO

The non-stoichiometric system Li0.8Ni0.6Sb0.4O2 is a Li-deficient derivative of the zigzag honeycomb antiferromagnet Li3Ni2SbO6. Structural and magnetic properties of Li0.8Ni0.6Sb0.4O2 were studied by means of X-ray diffraction, magnetic susceptibility, specific heat, and nuclear magnetic resonance measurements. Powder X-ray diffraction data shows the formation of a new phase, which is Sb-enriched and Li-deficient with respect to the structurally honeycomb-ordered Li3Ni2SbO6. This structural modification manifests in a drastic change of the magnetic properties in comparison to the stoichiometric partner. Bulk static (dc) magnetic susceptibility measurements show an overall antiferromagnetic interaction (Θ = -4 K) between Ni2+ spins (S = 1), while dynamic (ac) susceptibility reveals a transition into a spin glass state at a freezing temperature TSG ~ 8 K. These results were supported by the absence of the λ-anomaly in the specific heat Cp(T) down to 2 K. Moreover, combination of the bulk static susceptibility, heat capacity and 7Li NMR studies indicates a complicated temperature transformation of the magnetic system. We observe a development of a cluster spin glass, where the Ising-like Ni2+ magnetic moments demonstrate a 2D correlated slow short-range dynamics already at 12 K, whereas the formation of 3D short range static ordered clusters occurs far below the spin-glass freezing temperature at T ~ 4 K as it can be seen from the 7Li NMR spectrum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA