Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13747, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961991

RESUMO

Atmospheric rivers (ARs) generate most of the economic losses associated with flooding in the western United States and are projected to increase in intensity with climate change. This is of concern as flood damages have been shown to increase exponentially with AR intensity. To assess how AR-related flood damages are likely to respond to climate change, we constructed county-level damage models for the western 11 conterminous states using 40 years of flood insurance data linked to characteristics of ARs at landfall. Damage functions were applied to 14 CMIP5 global climate models under the RCP4.5 "intermediate emissions" and RCP8.5 "high emissions" scenarios, under the assumption that spatial patterns of exposure, vulnerability, and flood protection remain constant at present day levels. The models predict that annual expected AR-related flood damages in the western United States could increase from $1 billion in the historical period to $2.3 billion in the 2090s under the RCP4.5 scenario or to $3.2 billion under the RCP8.5 scenario. County-level projections were developed to identify counties at greatest risk, allowing policymakers to target efforts to increase resilience to climate change.


Assuntos
Inundações , Rios , Mudança Climática , Previsões , Modelos Teóricos , Estados Unidos
2.
Clim Dyn ; 57(7-8): 2233-2248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34092924

RESUMO

Santa Ana winds (SAWs) are associated with anomalous temperatures in coastal Southern California (SoCal). As dry air flows over SoCal's coastal ranges on its way from the elevated Great Basin down to sea level, all SAWs warm adiabatically. Many but not all SAWs produce coastal heat events. The strongest regionally averaged SAWs tend to be cold. In fact, some of the hottest and coldest observed temperatures in coastal SoCal are linked to SAWs. We show that hot and cold SAWs are produced by distinct synoptic dynamics. High-amplitude anticyclonic flow around a blocking high pressure aloft anchored at the California coast produces hot SAWs. Cold SAWs result from anticyclonic Rossby wave breaking over the northwestern U.S. Hot SAWs are preceded by warming in the Great Basin and dry conditions across the Southwestern U.S. Precipitation over the Southwest, including SoCal, and snow accumulation in the Great Basin usually precede cold SAWs. Both SAW flavors, but especially the hot SAWs, yield low relative humidity at the coast. Although cold SAWs tend to be associated with the strongest winds, hot SAWs tend to last longer and preferentially favor wildfire growth. Historically, out of large (> 100 acres) SAW-spread wildfires, 90% were associated with hot SAWs, accounting for 95% of burned area. As health impacts of SAW-driven coastal fall, winter and spring heat waves and impacts of smoke from wildfires have been recently identified, our results have implications for designing early warning systems. The long-term warming trend in coastal temperatures associated with SAWs is focused on January-March, when hot and cold SAW frequency and temperature intensity have been increasing and decreasing, respectively, over our 71-year record. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00382-021-05802-z.

3.
Sci Rep ; 9(1): 9944, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289295

RESUMO

Daily precipitation in California has been projected to become less frequent even as precipitation extremes intensify, leading to uncertainty in the overall response to climate warming. Precipitation extremes are historically associated with Atmospheric Rivers (ARs). Sixteen global climate models are evaluated for realism in modeled historical AR behavior and contribution of the resulting daily precipitation to annual total precipitation over Western North America. The five most realistic models display consistent changes in future AR behavior, constraining the spread of the full ensemble. They, moreover, project increasing year-to-year variability of total annual precipitation, particularly over California, where change in total annual precipitation is not projected with confidence. Focusing on three representative river basins along the West Coast, we show that, while the decrease in precipitation frequency is mostly due to non-AR events, the increase in heavy and extreme precipitation is almost entirely due to ARs. This research demonstrates that examining meteorological causes of precipitation regime change can lead to better and more nuanced understanding of climate projections. It highlights the critical role of future changes in ARs to Western water resources, especially over California.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA