Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(4): 6098-6112, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689631

RESUMO

This work first describes the intercalation of corrosion inhibitors into layered double hydroxides LDH-OH/CO3 nanocontainers (parental LDH) obtained in situ on the surface of magnesium alloy AZ91 in the presence of a chelating agent. Vanadate, as a typical broad inhibitor for active metals, and oxalate, as an inhibitor suitable for magnesium, were selected as a first approach. The optimization of exchange conditions was performed, and the optimal parameters (ambient pressure and 95 °C) were selected. The corrosion protective properties of obtained LDH-based layers were studied using immersion and salt spray tests in NaCl solution, supported by electrochemical impedance spectroscopy and atomic emission spectroelectrochemistry. It is demonstrated that vanadate intercalated into LDH is more effective for the active protection of AZ91 in comparison to the performance of oxalate. A possible mechanism of corrosion inhibition based on the application of LDH nanocontainers is suggested and discussed.

2.
Materials (Basel) ; 13(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290150

RESUMO

Nanocrystalline La0.9A0.1MnO3 (where A is Li, Na, K) powders were synthesized by a combustion method. The powders used to prepare nanoceramics were fabricated via a high-temperature sintering method. The structure and morphology of all compounds were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). It was found that the size of the crystallites depended on the type of alkali ions used. The high-pressure sintering method kept the nanosized character of the grains in the ceramics, which had a significant impact on their physical properties. Magnetization studies were performed for both powder and ceramic samples in order to check the impact of the alkali ion dopants as well as the sintering pressure on the magnetization of the compounds. It was found that, by using different dopants, it was possible to strongly change the magnetic characteristics of the manganites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA