Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 24(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29715078

RESUMO

Influenza virologic surveillance is critical each season for tracking influenza circulation, following trends in antiviral drug resistance, detecting novel influenza infections in humans, and selecting viruses for use in annual seasonal vaccine production. We developed a framework and process map for characterizing the landscape of US influenza virologic surveillance into 5 tiers of influenza testing: outpatient settings (tier 1), inpatient settings and commercial laboratories (tier 2), state public health laboratories (tier 3), National Influenza Reference Center laboratories (tier 4), and Centers for Disease Control and Prevention laboratories (tier 5). During the 2015-16 season, the numbers of influenza tests directly contributing to virologic surveillance were 804,000 in tiers 1 and 2; 78,000 in tier 3; 2,800 in tier 4; and 3,400 in tier 5. With the release of the 2017 US Pandemic Influenza Plan, the proposed framework will support public health officials in modeling, surveillance, and pandemic planning and response.


Assuntos
Vírus da Influenza A , Vírus da Influenza B , Influenza Humana/epidemiologia , Influenza Humana/virologia , Humanos , Vigilância da População , Prevalência , Estados Unidos/epidemiologia
2.
J Clin Microbiol ; 45(12): 3875-82, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17928425

RESUMO

There are numerous viral and bacterial causes of respiratory disease. To enable rapid and sensitive detection of even the most prevalent causes, there is a need for more-simplified testing systems that enable researchers and clinicians to perform multiplexed molecular diagnostics quickly and easily. To this end, a new multiplexed molecular test called the MultiCode-PLx respiratory virus panel (PLx-RVP) was developed and then implemented in a public health laboratory setting. A total of 687 respiratory samples were analyzed for the presence of 17 viruses that commonly cause respiratory disease. As a comparator, the samples were also tested using a standard testing algorithm that included the use of a real-time influenza virus A and B reverse transcription-PCR test and routine viral culture identification. The standard testing algorithm identified 503 (73%) samples as positive and 184 as negative. Analyzing the same 687 samples, the PLx-RVP assay detected one or more targets in 528 (77%) samples and found 159 samples negative for all targets. There were 25 discordant results between the two systems; 14 samples were positive for viruses not routinely tested for by the Wisconsin State Laboratory of Hygiene, and 13 of these were confirmed by real-time PCR. When the results of the standard testing algorithm were considered "true positives," the PLx-RVP assay showed an overall sensitivity of 99% and an overall specificity of 87%. In total, the PLx-RVP assay detected an additional 40 viral infections, of which 11 were mixed infections.


Assuntos
Reação em Cadeia da Polimerase/métodos , Infecções Respiratórias/virologia , Viroses/diagnóstico , Vírus/classificação , Vírus/isolamento & purificação , Humanos , Sensibilidade e Especificidade , Cultura de Vírus , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA