Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(14): 3013-3032.e22, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352855

RESUMO

Mitochondrial DNA (mtDNA) is a potent agonist of the innate immune system; however, the exact immunostimulatory features of mtDNA and the kinetics of detection by cytosolic nucleic acid sensors remain poorly defined. Here, we show that mitochondrial genome instability promotes Z-form DNA accumulation. Z-DNA binding protein 1 (ZBP1) stabilizes Z-form mtDNA and nucleates a cytosolic complex containing cGAS, RIPK1, and RIPK3 to sustain STAT1 phosphorylation and type I interferon (IFN-I) signaling. Elevated Z-form mtDNA, ZBP1 expression, and IFN-I signaling are observed in cardiomyocytes after exposure to Doxorubicin, a first-line chemotherapeutic agent that induces frequent cardiotoxicity in cancer patients. Strikingly, mice lacking ZBP1 or IFN-I signaling are protected from Doxorubicin-induced cardiotoxicity. Our findings reveal ZBP1 as a cooperative partner for cGAS that sustains IFN-I responses to mitochondrial genome instability and highlight ZBP1 as a potential target in heart failure and other disorders where mtDNA stress contributes to interferon-related pathology.


Assuntos
Cardiotoxicidade , DNA Mitocondrial , Animais , Camundongos , DNA Mitocondrial/metabolismo , Imunidade Inata , Interferons/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosforilação
2.
Cell ; 148(4): 716-26, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22341444

RESUMO

Mitochondrial dysfunction causes poorly understood tissue-specific pathology stemming from primary defects in respiration, coupled with altered reactive oxygen species (ROS), metabolic signaling, and apoptosis. The A1555G mtDNA mutation that causes maternally inherited deafness disrupts mitochondrial ribosome function, in part, via increased methylation of the mitochondrial 12S rRNA by the methyltransferase mtTFB1. In patient-derived A1555G cells, we show that 12S rRNA hypermethylation causes ROS-dependent activation of AMP kinase and the proapoptotic nuclear transcription factor E2F1. This retrograde mitochondrial-stress relay is operative in vivo, as transgenic-mtTFB1 mice exhibit enhanced 12S rRNA methylation in multiple tissues, increased E2F1 and apoptosis in the stria vascularis and spiral ganglion neurons of the inner ear, and progressive E2F1-dependent hearing loss. This mouse mitochondrial disease model provides a robust platform for deciphering the complex tissue specificity of human mitochondrial-based disorders, as well as the precise pathogenic mechanism of maternally inherited deafness and its exacerbation by environmental factors.


Assuntos
Surdez/metabolismo , Modelos Animais de Doenças , Fator de Transcrição E2F1/metabolismo , Animais , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Orelha Interna/patologia , Cistos Glanglionares/patologia , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Neurônios/patologia , RNA Ribossômico/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Hum Mol Genet ; 33(R1): R80-R91, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38779772

RESUMO

Mitochondria are pleiotropic organelles central to an array of cellular pathways including metabolism, signal transduction, and programmed cell death. Mitochondria are also key drivers of mammalian immune responses, functioning as scaffolds for innate immune signaling, governing metabolic switches required for immune cell activation, and releasing agonists that promote inflammation. Mitochondrial DNA (mtDNA) is a potent immunostimulatory agonist, triggering pro-inflammatory and type I interferon responses in a host of mammalian cell types. Here we review recent advances in how mtDNA is detected by nucleic acid sensors of the innate immune system upon release into the cytoplasm and extracellular space. We also discuss how the interplay between mtDNA release and sensing impacts cellular innate immune endpoints relevant to health and disease.


Assuntos
DNA Mitocondrial , Imunidade Inata , Mitocôndrias , Transdução de Sinais , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/imunologia , Mitocôndrias/genética , Animais , Transdução de Sinais/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Interferon Tipo I/genética , Inflamação/imunologia , Inflamação/genética
4.
Hum Mol Genet ; 32(15): 2422-2440, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37129502

RESUMO

The recognition that cytosolic mitochondrial DNA (mtDNA) activates cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) innate immune signaling has unlocked novel disease mechanisms. Here, an uncharacterized variant predicted to affect TOP1MT function, P193L, was discovered in a family with multiple early onset autoimmune diseases, including Systemic Lupus Erythematosus (SLE). Although there was no previous genetic association between TOP1MT and autoimmune disease, the role of TOP1MT as a regulator of mtDNA led us to investigate whether TOP1MT could mediate the release of mtDNA to the cytosol, where it could then activate the cGAS-STING innate immune pathway known to be activated in SLE and other autoimmune diseases. Through analysis of cells with reduced TOP1MT expression, we show that loss of TOP1MT results in release of mtDNA to the cytosol, which activates the cGAS-STING pathway. We also characterized the P193L variant for its ability to rescue several TOP1MT functions when expressed in TOP1MT knockout cells. We show that the P193L variant is not fully functional, as its re-expression at high levels was unable to rescue mitochondrial respiration deficits, and only showed partial rescue for other functions, including repletion of mtDNA replication following depletion, nucleoid size, steady state mtDNA transcripts levels and mitochondrial morphology. Additionally, expression of P193L at endogenous levels was unable to rescue mtDNA release-mediated cGAS-STING signaling. Overall, we report a link between TOP1MT and mtDNA release leading to cGAS-STING activation. Moreover, we show that the P193L variant has partial loss of function that may contribute to autoimmune disease susceptibility via cGAS-STING mediated activation of the innate immune system.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , DNA Mitocondrial/genética , Imunidade Inata/genética , Interferons , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
5.
Trends Biochem Sci ; 45(7): 564-577, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32291139

RESUMO

The dynamic processes of mitochondrial fission and fusion are tightly regulated, determine mitochondrial shape, and influence mitochondrial functions. For example, fission and fusion mediate energy output, production of reactive oxygen species (ROS), and mitochondrial quality control. As our understanding of the molecular machinery and mechanisms regulating dynamic changes in the mitochondrial network continues to grow, we are beginning to unravel important signaling pathways that integrate physiological cues to modulate mitochondrial morphology and function. Here, we highlight reciprocal regulation of mitochondrial fusion and fission as an emerging trend in the regulation of mitochondrial function.


Assuntos
Dinâmica Mitocondrial , Animais , Humanos , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
6.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891822

RESUMO

In this review we examine the functionally diverse ATPase associated with various cellular activities (AAA-ATPase), valosin-containing protein (VCP/p97), its molecular functions, the mutational landscape of VCP and the phenotypic manifestation of VCP disease. VCP is crucial to a multitude of cellular functions including protein quality control, endoplasmic reticulum-associated degradation (ERAD), autophagy, mitophagy, lysophagy, stress granule formation and clearance, DNA replication and mitosis, DNA damage response including nucleotide excision repair, ATM- and ATR-mediated damage response, homologous repair and non-homologous end joining. VCP variants cause multisystem proteinopathy, and pathology can arise in several tissue types such as skeletal muscle, bone, brain, motor neurons, sensory neurons and possibly cardiac muscle, with the disease course being challenging to predict.


Assuntos
Fenótipo , Proteína com Valosina , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Humanos , Animais , Mutação , Autofagia/genética , Reparo do DNA
7.
J Biol Chem ; 298(10): 102420, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030054

RESUMO

TOP1MT encodes a mitochondrial topoisomerase that is important for mtDNA regulation and is involved in mitochondrial replication, transcription, and translation. Two variants predicted to affect TOP1MT function (V1 - R198C and V2 - V338L) were identified by exome sequencing of a newborn with hypertrophic cardiomyopathy. As no pathogenic TOP1MT variants had been confirmed previously, we characterized these variants for their ability to rescue several TOP1MT functions in KO cells. Consistent with these TOP1MT variants contributing to the patient phenotype, our comprehensive characterization suggests that both variants had impaired activity. Critically, we determined neither variant was able to restore steady state levels of mitochondrial-encoded proteins nor to rescue oxidative phosphorylation when re-expressed in TOP1MT KO cells. However, we found the two variants behaved differently in some respects; while the V1 variant was more efficient in restoring transcript levels, the V2 variant showed better rescue of mtDNA copy number and replication. These findings suggest that the different TOP1MT variants affect distinct TOP1MT functions. Altogether, these findings begin to provide insight into the many roles that TOP1MT plays in the maintenance and expression of the mitochondrial genome and how impairments in this important protein may lead to human pathology.


Assuntos
Cardiomiopatia Hipertrófica , DNA Topoisomerases Tipo I , Genoma Mitocondrial , Mitocôndrias , Humanos , Recém-Nascido , Cardiomiopatia Hipertrófica/genética , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Mitocondrial/metabolismo , Variação Genética , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
8.
J Cell Sci ; 134(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34910819

RESUMO

The dynamic nature of mitochondria, which can fuse, divide and move throughout the cell, allows these critical organelles to adapt their function in response to cellular demands, and is also important for regulating mitochondrial DNA (mtDNA). While it is established that impairments in mitochondrial fusion and fission impact the mitochondrial genome and can lead to mtDNA depletion, abnormal nucleoid organization or accumulation of deletions, it is not entirely clear how or why remodeling mitochondrial network morphology affects mtDNA. Here, we focus on recent advances in our understanding of how mitochondrial dynamics contribute to the regulation of mtDNA and discuss links to human disease.


Assuntos
Genoma Mitocondrial , Dinâmica Mitocondrial , DNA Mitocondrial/genética , Humanos , Mitocôndrias/genética , Dinâmica Mitocondrial/genética
9.
Int J Mol Sci ; 23(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35328774

RESUMO

Human mitochondrial disorders impact tissues with high energetic demands and can be associated with cardiac muscle disease (cardiomyopathy) and early mortality. However, the mechanistic link between mitochondrial disease and the development of cardiomyopathy is frequently unclear. In addition, there is often marked phenotypic heterogeneity between patients, even between those with the same genetic variant, which is also not well understood. Several of the mitochondrial cardiomyopathies are related to defects in the maintenance of mitochondrial protein homeostasis, or proteostasis. This essential process involves the importing, sorting, folding and degradation of preproteins into fully functional mature structures inside mitochondria. Disrupted mitochondrial proteostasis interferes with mitochondrial energetics and ATP production, which can directly impact cardiac function. An inability to maintain proteostasis can result in mitochondrial dysfunction and subsequent mitophagy or even apoptosis. We review the known mitochondrial diseases that have been associated with cardiomyopathy and which arise from mutations in genes that are important for mitochondrial proteostasis. Genes discussed include DnaJ heat shock protein family member C19 (DNAJC19), mitochondrial import inner membrane translocase subunit TIM16 (MAGMAS), translocase of the inner mitochondrial membrane 50 (TIMM50), mitochondrial intermediate peptidase (MIPEP), X-prolyl-aminopeptidase 3 (XPNPEP3), HtraA serine peptidase 2 (HTRA2), caseinolytic mitochondrial peptidase chaperone subunit B (CLPB) and heat shock 60-kD protein 1 (HSPD1). The identification and description of disorders with a shared mechanism of disease may provide further insights into the disease process and assist with the identification of potential therapeutics.


Assuntos
Cardiomiopatias , Proteínas Mitocondriais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Homeostase , Humanos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Peptídeo Hidrolases/metabolismo , Transporte Proteico , Proteostase
10.
Biochem Soc Trans ; 49(6): 2807-2819, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34812890

RESUMO

The dynamic processes of mitochondrial fusion and fission determine the shape of mitochondria, which can range from individual fragments to a hyperfused network, and influence mitochondrial function. Changes in mitochondrial shape can occur rapidly, allowing mitochondria to adapt to specific cues and changing cellular demands. Here, we will review what is known about how key proteins required for mitochondrial fusion and fission are regulated by their acetylation status, with acetylation promoting fission and deacetylation enhancing fusion. In particular, we will examine the roles of NAD+ dependant sirtuin deacetylases, which mediate mitochondrial acetylation, and how this post-translational modification provides an exquisite regulatory mechanism to co-ordinate mitochondrial function with metabolic demands of the cell.


Assuntos
Mitocôndrias/fisiologia , Dinâmica Mitocondrial , Proteínas/metabolismo , Acetilação
11.
Int J Mol Sci ; 21(9)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380723

RESUMO

Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder that exhibits a common set of behavioral and cognitive impairments. Although the etiology of ASD remains unclear, mitochondrial dysfunction has recently emerged as a possible causative factor underlying ASD. The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that augments mitochondrial function, and has been shown to reduce autistic behaviors in both humans and in rodent models of ASD. The aim of the current study was to examine mitochondrial bioenergetics in the BTBR mouse model of ASD and to determine whether the KD improves mitochondrial function. We also investigated changes in mitochondrial morphology, which can directly influence mitochondrial function. We found that BTBR mice had altered mitochondrial function and exhibited smaller more fragmented mitochondria compared to C57BL/6J controls, and that supplementation with the KD improved both mitochondrial function and morphology. We also identified activating phosphorylation of two fission proteins, pDRP1S616 and pMFFS146, in BTBR mice, consistent with the increased mitochondrial fragmentation that we observed. Intriguingly, we found that the KD decreased pDRP1S616 levels in BTBR mice, likely contributing to the restoration of mitochondrial morphology. Overall, these data suggest that impaired mitochondrial bioenergetics and mitochondrial fragmentation may contribute to the etiology of ASD and that these alterations can be reversed with KD treatment.


Assuntos
Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/metabolismo , Dieta Cetogênica , Suscetibilidade a Doenças , Mitocôndrias/genética , Mitocôndrias/metabolismo , Animais , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/dietoterapia , Biomarcadores , Gerenciamento Clínico , Modelos Animais de Doenças , Camundongos , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Neurônios/patologia
12.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171986

RESUMO

Mitochondrial disease represents a collection of rare genetic disorders caused by mitochondrial dysfunction. These disorders can be quite complex and heterogeneous, and it is recognized that mitochondrial disease can affect any tissue at any age. The reasons for this variability are not well understood. In this review, we develop and expand a subset of mitochondrial diseases including predominantly skeletal phenotypes. Understanding how impairment ofdiverse mitochondrial functions leads to a skeletal phenotype will help diagnose and treat patients with mitochondrial disease and provide additional insight into the growing list of human pathologies associated with mitochondrial dysfunction. The underlying disease genes encode factors involved in various aspects of mitochondrial protein homeostasis, including proteases and chaperones, mitochondrial protein import machinery, mediators of inner mitochondrial membrane lipid homeostasis, and aminoacylation of mitochondrial tRNAs required for translation. We further discuss a complex of frequently associated phenotypes (short stature, cataracts, and cardiomyopathy) potentially explained by alterations to steroidogenesis, a process regulated by mitochondria. Together, these observations provide novel insight into the consequences of impaired mitochondrial protein homeostasis.


Assuntos
Osso e Ossos/metabolismo , Doenças Mitocondriais/metabolismo , Esqueleto/metabolismo , Homeostase , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/fisiopatologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Peptídeo Hidrolases/metabolismo , Fenótipo , Transporte Proteico , Proteostase , Esqueleto/fisiologia
13.
Adv Exp Med Biol ; 1158: 217-246, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31452143

RESUMO

Mitochondria maintain and express their own genome, referred to as mtDNA, which is required for proper mitochondrial function. While mutations in mtDNA can cause a heterogeneous array of disease phenotypes, there is currently no cure for this collection of diseases. Here, we will cover characteristics of the mitochondrial genome important for understanding the pathology associated with mtDNA mutations, and review recent approaches that are being developed to treat and prevent mtDNA disease. First, we will discuss mitochondrial replacement therapy (MRT), where mitochondria from a healthy donor replace maternal mitochondria harbouring mutant mtDNA. In addition to ethical concerns surrounding this procedure, MRT is only applicable in cases where the mother is known or suspected to carry mtDNA mutations. Thus, there remains a need for other strategies to treat patients with mtDNA disease. To this end, we will also discuss several alternative means to reduce the amount of mutant mtDNA present in cells. Such methods, referred to as heteroplasmy shifting, have proven successful in animal models. In particular, we will focus on the approach of targeting engineered endonucleases to specifically cleave mutant mtDNA. Together, these approaches offer hope to prevent the transmission of mtDNA disease and potentially reduce the impact of mtDNA mutations.


Assuntos
Terapia Genética , Doenças Mitocondriais , Animais , DNA Mitocondrial , Modelos Animais de Doenças , Terapia Genética/tendências , Genoma Mitocondrial , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/terapia , Mutação
14.
Brain Inj ; 33(4): 534-542, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30663413

RESUMO

OBJECTIVE: To determine if chronic changes in mitochondrial function occur following a mild traumatic brain injury in young rats. RESEARCH DESIGN: Closed-head, weight drop model was used to cause mTBI by applying rotational forces to the brain without surgery. Behavioral battery was used to assess multiple dimensions of impairment across time. Analysis of brain tissue carried out at three-weeks post-injury represents a chronic time point to complement previous work examining acute time points. METHODS AND PROCEDURES: Twenty-three male and 22 female rats one month of age were divided equally into sham and mTBI groups with the latter undergoing the weight drop. Multiple behavioral tests in combination with energetic (oxygen consumption), molecular (immunoblotting), and imaging (electron microscopy) characterization of brain mitochondria were performed. MAIN OUTCOMES AND RESULTS: Mitochondria isolated from sham juvenile female rats had higher basal oxygen consumption compared to juvenile male rats (514.875 ± 171.091 pmol/min vs. 267 ± 73.906 pmol/min, p < 0.0001). Chronic sex-dependent differences were observed in females after mTBI in basal (514.875 ± 171.091 pmol/min vs. 600.688 ± 124.422 pmol/min, p = 0.0264) and maximal oxygen consumption (298.938 ± 119.964 pmol/min vs. 403.281 ± 112.922 pmol/min, p = 0.0001) and proton leak (59.46 ± 7.807 vs. 84.32 ± 5.80 pmol/min, p = 0.0001). CONCLUSIONS: The juvenile rat brain displays sex differences in mitochondrial function at (1) baseline and (2) in long-term outcomes after mTBI. These results offer new insight into a potential mechanism for persistent, individualized impairments following pediatric mTBI.


Assuntos
Concussão Encefálica/fisiopatologia , Concussão Encefálica/psicologia , Modelos Animais de Doenças , Aprendizagem em Labirinto/fisiologia , Mitocôndrias/fisiologia , Caracteres Sexuais , Animais , Feminino , Masculino , Ratos
15.
Biochim Biophys Acta ; 1833(2): 417-24, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22683990

RESUMO

One of the critical problems with the combustion of sugar and fat is the generation of cellular oxidation. The ongoing consumption of oxygen results in damage to lipids, protein and mtDNA, which must be repaired through essential pathways in mitochondrial quality control. It has long been established that intrinsic protease pathways within the matrix and intermembrane space actively degrade unfolded and oxidized mitochondrial proteins. However, more recent work into the field of quality control has established distinct roles for both mitochondrial fragmentation and hyperfusion in different aspects of quality control and survival. In addition, mitochondrial derived vesicles have recently been shown to carry cargo directly to the lysosome, adding further insight into the integration of mitochondrial dynamics in cellular homeostasis. This review will focus on the mechanisms and emerging questions concerning the links between mitochondrial dynamics and quality control. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.


Assuntos
Dinâmica Mitocondrial/fisiologia , Estresse Fisiológico/fisiologia , Animais , Homeostase , Humanos , Controle de Qualidade
16.
Proc Natl Acad Sci U S A ; 108(44): 17921-6, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22003127

RESUMO

Basal transcription of human mitochondrial DNA (mtDNA) in vitro requires the single-subunit, bacteriophage-related RNA polymerase, POLRMT, and transcription factor h-mtTFB2. This two-component system is activated differentially at mtDNA promoters by human mitochondrial transcription factor A (h-mtTFA). Mitochondrial ribosomal protein L7/L12 (MRPL12) binds directly to POLRMT, but whether it does so in the context of the ribosome or as a "free" protein in the matrix is unknown. Furthermore, existing evidence that MRPL12 activates mitochondrial transcription derives from overexpression studies in cultured cells and transcription experiments using crude mitochondrial lysates, precluding direct effects of MRPL12 on transcription to be assigned. Here, we report that depletion of MRPL12 from HeLa cells by shRNA results in decreased steady-state levels of mitochondrial transcripts, which are not accounted for by changes in RNA stability. We also show that a significant "free" pool of MRPL12 exists in human mitochondria not associated with ribosomes. "Free" MRPL12 binds selectively to POLRMT in vivo in a complex distinct from those containing h-mtTFB2. Finally, using a fully recombinant mitochondrial transcription system, we demonstrate that MRPL12 stimulates promoter-dependent and promoter-independent transcription directly in vitro. Based on these results, we propose that, when not associated with ribosomes, MRPL12 has a second function in transcription, perhaps acting to facilitate the transition from initiation to elongation. We speculate that this is one mechanism to coordinate mitochondrial ribosome biogenesis and transcription in human mitochondria, where transcription of rRNAs from the mtDNA presumably needs to be adjusted in accordance with the rate of import and assembly of the nucleus-encoded MRPs into ribosomes.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Mitocôndrias/enzimologia , Proteínas Ribossômicas/metabolismo , Transcrição Gênica , Células HeLa , Humanos , Reação em Cadeia da Polimerase em Tempo Real
17.
Trends Endocrinol Metab ; 35(4): 308-320, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38103974

RESUMO

Mitochondrial quality control (MQC) mechanisms are required to maintain a functional proteome, which enables mitochondria to perform a myriad of important cellular functions from oxidative phosphorylation to numerous other metabolic pathways. Mitochondrial protein homeostasis begins with the import of over 1000 nuclear-encoded mitochondrial proteins and the synthesis of 13 mitochondrial DNA-encoded proteins. A network of chaperones and proteases helps to fold new proteins and degrade unnecessary, damaged, or misfolded proteins, whereas more extensive damage can be removed by mitochondrial-derived vesicles (MDVs) or mitochondrial autophagy (mitophagy). Here, focusing on mechanisms in mammalian cells, we review the importance of mitochondrial protein import as a sentinel of mitochondrial function that activates multiple MQC mechanisms when impaired.


Assuntos
Autofagia , Mitocôndrias , Animais , Humanos , Mitocôndrias/metabolismo , Mitofagia , Resposta a Proteínas não Dobradas , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mamíferos/metabolismo
18.
Antioxid Redox Signal ; 40(1-3): 1-15, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154733

RESUMO

Aims: Structural analogues of bisphenol A (BPA), including bisphenol S (BPS) and bisphenol F (BPF), are emerging environmental toxicants as their presence in the environment is rising since new regulatory restrictions were placed on BPA-containing infant products. The adipogenesis-enhancing effect of bisphenols may explain the link between human exposure and metabolic disease; however, underlying molecular pathways remain unresolved. Results: Exposure to BPS, BPF, BPA, or reactive oxygen species (ROS) generators enhanced lipid droplet formation and expression of adipogenic markers after induction of differentiation in adipose-derived progenitors isolated from mice. RNAseq analysis in BPS-exposed progenitors revealed modulation in pathways regulating adipogenesis and responses to oxidative stress. ROS were higher in bisphenol-exposed cells, while cotreatment with antioxidants attenuated adipogenesis and abolished the effect of BPS. There was a loss of mitochondrial membrane potential in BPS-exposed cells and mitochondria-derived ROS contributed to the potentiation of adipogenesis by BPS and its analogues. Male mice exposed to BPS during gestation had higher whole-body adiposity, as measured by time domain nuclear magnetic resonance, while postnatal exposure had no impact on adiposity in either sex. Innovation: These findings support existing evidence showing a role for ROS in regulating adipocyte differentiation and are the first to highlight ROS as a unifying mechanism that explains the proadipogenic properties of BPA and its structural analogues. Conclusion: ROS act as signaling molecules in the regulation of adipocyte differentiation and mediate bisphenol-induced potentiation of adipogenesis. Antioxid. Redox Signal. 40, 1-15.


Assuntos
Adipogenia , Compostos Benzidrílicos , Fenóis , Sulfonas , Humanos , Masculino , Camundongos , Animais , Espécies Reativas de Oxigênio , Compostos Benzidrílicos/farmacologia
19.
Proc Natl Acad Sci U S A ; 107(27): 12133-8, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20562347

RESUMO

The core human mitochondrial transcription apparatus is currently regarded as an obligate three-component system comprising the bacteriophage T7-related mitochondrial RNA polymerase, the rRNA methyltransferase-related transcription factor, h-mtTFB2, and the high mobility group box transcription/DNA-packaging factor, h-mtTFA/TFAM. Using a faithful recombinant human mitochondrial transcription system from Escherichia coli, we demonstrate that specific initiation from the mtDNA promoters, LSP and HSP1, only requires mitochondrial RNA polymerase and h-mtTFB2 in vitro. When h-mtTFA is added to these basal components, LSP exhibits a much lower threshold for activation and a larger amplitude response than HSP1. In addition, when LSP and HSP1 are together on the same transcription template, h-mtTFA-independent transcription from HSP1 and h-mtTFA-dependent transcription from both promoters is enhanced and a higher concentration of h-mtTFA is required to stimulate HSP1. Promoter competition experiments revealed that, in addition to LSP competing transcription components away from HSP1, additional cis-acting signals are involved in these aspects of promoter regulation. Based on these results, we speculate that the human mitochondrial transcription system may have evolved to differentially regulate transcription initiation and transcription-primed mtDNA replication in response to the amount of h-mtTFA associated with nucleoids, which could begin to explain the heterogeneity of nucleoid structure and activity in vivo. Furthermore, this study sheds new light on the evolution of mitochondrial transcription components by showing that the human system is a regulated two-component system in vitro, and thus more akin to that of budding yeast than thought previously.


Assuntos
DNA Mitocondrial/genética , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Modelos Genéticos , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/genética
20.
Mitochondrion ; 68: 44-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356719

RESUMO

Mitochondrial dysfunction as defined by transcriptomic and proteomic analysis of biopsies or ultra-structure in transmission electron microscopy occurs in inflammatory bowel disease (IBD); however, mitochondrial dynamics in IBD have received minimal attention, with most investigations relying on cell-based in vitro models. We build on these studies by adapting the epithelial cell immunofluorescence workflow to imaging mitochondrial networks in normal and inflamed colonic tissue (i.e., murine di-nitrobenzene sulphonic acid (DNBS)-induced colitis, human ulcerative colitis). Using antibodies directed to TOMM20 (translocase of outer mitochondrial membrane 20) and cytochrome-C, we have translated the cell-based protocol for high-fidelity imaging to examine epithelial mitochondria networks in intact intestine. In epithelia of non-inflamed small or large intestinal tissue, the mitochondrial networks were dense and compact. This pattern was more pronounced in the basal region of the cell compared to that between the nucleus and apical surface facing the gut lumen. In comparison, mitochondrial networks in inflamed tissue displayed substantial loss of TOMM20+ staining. The remaining networks were less dense and fragmented, and contained isolated spherical mitochondrial fragments. The degree of mitochondrial network fragmentation mirrored the severity of inflammation, as assessed by blinded semi-quantitative scoring. As an indication of poor cell 'health' or viability, cytosolic cytochrome-C was observed in enterocytes with highly fragmented mitochondria. Thus, high-resolution and detailed visualization of mitochondrial networks in tissue is a feasible and valuable approach to assess disease, suited to characterizing mitochondrial abnormalities in tissue. We speculate that drugs that maintain a functional remodelling mitochondrial network and limit excess fragmentation could be a valuable addition to current therapies for IBD.


Assuntos
Citocromos c , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Citocromos c/metabolismo , Proteômica , Colo/metabolismo , Colo/patologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Proteínas de Transporte , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA