Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Regen Med ; 17(8): 533-546, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35638401

RESUMO

Background: The present research has been undertaken to study the therapeutic potential of mesenchymal stem cells (MSCs) for the treatment of neuroinflammation-induced cognitive disorders. Methods: Either umbilical cord or adipose MSCs were injected into mice treated with lipopolysaccharide. The mice were studied in behavioral tests, and their brains were examined by means of immunohistochemistry, electron microscopy and sandwich ELISA. Results: MSCs, introduced either intravenously or intraperitoneally, restored episodic memory of mice disturbed by inflammation, normalized nAChR and Aß1-42 levels and stimulated proliferation of neural progenitor cells in the brain. The effect of MSCs was observed for months, whereas that of MSC-conditioned medium was transient and stimulated an immune reaction. SDF-1α potentiated the effects of MSCs on the brain and memory. Conclusion: MSCs of different origins provide a long-term therapeutic effect in the treatment of neuroinflammation-induced episodic memory impairment.


Assuntos
Disfunção Cognitiva , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Disfunção Cognitiva/terapia , Camundongos , Doenças Neuroinflamatórias , Cordão Umbilical
2.
Front Pharmacol ; 10: 355, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057400

RESUMO

Neuroinflammation is regarded as one of the pathogenic factors of Alzheimer disease (AD). Previously, we showed that mice regularly injected with bacterial lipopolysaccharide (LPS) possessed the AD-like symptoms like episodic memory decline, elevated amounts of amyloid beta (Aß) peptide (1-42), and decreased levels of nicotinic acetylcholine receptors (nAChRs) in the brain. The use of mesenchymal stem cells (MSCs), which can differentiate into multiple cell types, including neurons, is an attractive idea of regenerative medicine, in particular, for neurodegenerative disorders like AD. In the present study, we aimed to investigate whether pathogenic effect of LPS on the brain and behavior of mice can be prevented or treated by injection of MSCs or MSC-produced soluble factors. Fluorescently-labeled MSCs, injected intravenously, were found in the brain blood vessels of LPS-treated mice. Mice co-injected with LPS and MSCs did not demonstrate episodic memory impairment, Aß (1-42) accumulation, and nAChR decrease in the brain and brain mitochondria. Their mitochondria released less cytochrome c under the effect of Ca2+ compared to mitochondria of LPS-only-treated mice. Moreover, MSCs could reverse the pathogenic symptoms developed 3 weeks after LPS injection. Cultured MSCs produced IL-6 in response to LPS and MSCs effect in vivo was accompanied by additional stimulation of both micro- and macroglia. Xenogeneic (human) MSCs were almost as efficient as allogeneic (mouse) ones and regular injections of human MSC-conditioned medium also produced positive effect. These data allow suggesting MSCs as a potential therapeutic tool to cure neuroinflammation-related cognitive pathology.

3.
Neuroscience ; 413: 31-44, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31202708

RESUMO

Nicotinic acetylcholine receptors of α7 subtype (α7 nAChRs) are involved in regulating cognition, inflammation and cell survival. Neuroinflammation is accompanied by the decrease of α7 nAChRs in the brain and impairment of memory. We show here that α7-/- mice possess pro-inflammatory phenotype and demonstrate worse episodic memory compared to wild-type mice. Previously we reported that mesenchymal stem cells (MSCs) restored episodic memory of lipopolysaccharide-treated wild-type mice. The aim of this study was to examine if MSCs or their soluble factors improve memory of α7-/- mice. The α7-specific signal (ELISA) and α7+ cells (IHC) were found in the brain of α7-/- mice on days 7 and 14 after intravenous injection of α7+ MSCs from either human umbilical cord (hMSCs) or mouse placenta (mMSCs). The intravenously injected MSCs or intraperitoneally injected hMSCs-conditioned medium transiently improved episodic memory of α7-/- mice and decreased cytochrome c release from their brain mitochondria under the effect of Ca2+. Either MSCs or conditioned medium stimulated an IL-6 increase in the brain, which coincided with the improvement of episodic memory. Injections of recombinant IL-6 also improved episodic memory of α7-/- mice accompanied by the up-regulation of α3, α4, ß2 and ß4 nAChR subunits in the brain. It is concluded that MSCs, injected intravenously, penetrate the brain of α7-/- mice and persist there for at least 2 weeks. They improve episodic memory of mice and make their mitochondria more resistant to apoptogenic influence. One of the soluble factors responsible for the memory improvement is IL-6.


Assuntos
Interleucina-6/farmacologia , Transtornos da Memória/terapia , Memória Episódica , Transplante de Células-Tronco Mesenquimais , Nootrópicos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/deficiência , Animais , Encéfalo/metabolismo , Feminino , Humanos , Transtornos da Memória/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA