Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Mol Cell Biochem ; 478(2): 317-327, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35796909

RESUMO

Morchella is a kind of important edible and medicinal fungi, which is rich in polysaccharides, enzymes, fatty acids, amino acids and other active components. Extracellular vesicles (EVs) have a typical membrane structure, and the vesicles contain some specific lipids, miRNAs and proteins, and their can deliver the contents to different cells to change their functions. The present study investigated whether Morchella produce extracellular vesicles and its anti-inflammatory effect on lipopolysaccharide (LPS)-induced RAW246.7 macrophages. The experimental results showed that Morchella produced extracellular vesicles and significantly reduced the production of nitric oxide (NO) and reactive oxygen species (ROS) in a model of LPS-induced inflammation. In addition, the expression of inflammatory factor-related genes such as inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) showed dose-dependent inhibition. Morchella extracellular vesicles also can inhibit the inflammatory response induced by LPS by inhibiting the production of ROS and reducing the phosphorylation levels of the p38 MAPK signaling pathway. These results indicate that the Morchella extracellular vesicles can be used as a potential anti-inflammatory substance in the treatment of inflammatory diseases.


Assuntos
Ascomicetos , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Sistema de Sinalização das MAP Quinases , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Óxido Nítrico/metabolismo
2.
Nucleic Acids Res ; 49(16): e94, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34157103

RESUMO

The Class 1 type I CRISPR-Cas systems represent the most abundant and diverse CRISPR systems in nature. However, their applications for generic genome editing have been hindered due to difficulties of introducing the class-specific, multi-component effectors (Cascade) in heterologous hosts for functioning. Here we established a transferrable Cascade system that enables stable integration and expression of a highly active type I-F Cascade in heterologous bacterial hosts for various genetic exploitations. Using the genetically recalcitrant Pseudomonas species as a paradigm, we show that the transferred Cascade displayed substantially higher DNA interference activity and greater editing capacity than both the integrative and plasmid-borne Cas9 systems, and enabled deletion of large fragments such as the 21-kb integrated cassette with efficiency and simplicity. An advanced I-F-λred system was further developed to enable editing in genotypes with poor homologous recombination capacity, clinical isolates lacking sequence information, and cells containing anti-CRISPR elements Acrs. Lastly, an 'all-in-one' I-F Cascade-mediated CRISPRi platform was developed for transcription modulation by simultaneous introduction of the Cascade and the programmed mini-CRISPR array in one-step. This study provides a framework for expanding the diverse type I Cascades for widespread, heterologous genome editing and establishment of editing techniques in 'non-model' bacterial species.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Pseudomonas/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Recombinação Genética , Transcrição Gênica
3.
Biotechnol Lett ; 45(10): 1309-1326, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37606753

RESUMO

Alkyl hydroperoxide reductase (Ahp), comprised of four different subunits AhpC, AhpD, AhpE, and AhpF, is a thiol-based antioxidative enzyme with the ability to protect bacteria against oxidative stress. Functionally, AhpC and AhpE considered as peroxidases directly detoxify peroxides, while AhpD and AhpF as oxidoreductases restore oxidized peroxidases to their reduced form. Corynebacterium glutamicum ncgl0877 encodes a putative Ahp with a unique Cys-Pro-Phe-Cys (C-P-G-C) active-site motif, similar with those of the thiol-disulfide oxidoreductases such as thioredoxin (Trx), mycoredoxin-1 (Mrx1) and AhpD. However, its physiological and biochemical functions remain unknown in C. glutamicum. Here, we report that NCgl0877, designated CgAhp, is involved in the protection against organic peroxide (OP) stress. The cgahp-deleted strain is notably more sensitive to OP stress. The cgahp expression is controlled by a MarR-type transcriptional repressor OasR (organic peroxide- and antibiotic-sensing regulator). The physiological role of CgAhp in resistance to OP stresses is corroborated by its induced expression under stresses. Although CgAhp has a weak peroxidase activity toward OP, it mainly supports the OP-scavenging activity of the thiol-dependent peroxidase preferentially linked to the dihydrolipoamide dehydrogenase (Lpd)/dihydrolipoamide succinyltransferase (SucB)/NADH system. The C-P-G-C motif of CgAhp is essential to maintain the reductase activity. In conclusion, our study identifies CgAhp, behaving like AhpD, as a key disulfide oxidoreductase involved in the oxidative stress tolerance and the functional electron donor for peroxidase.


Assuntos
Corynebacterium glutamicum , Peroxirredoxinas , Peroxirredoxinas/genética , Peroxidase , Corynebacterium glutamicum/genética , Estresse Oxidativo , Antioxidantes , Dissulfetos
4.
Microb Cell Fact ; 21(1): 123, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729563

RESUMO

BACKGROUND: The TetR (tetracycline repressor) family is one of the major transcription factor families that regulate expression of genes involved in bacterial antimicrobial resistance systems. NCgl0886 protein, designated as AtsR, is a member of the TetR family identified in Corynebacterium glutamicum, which is conserved in several species of the genera Corynebacterium, also including the well-known pathogen C. diphtheriae. AtsR is located at no far upstream of the identically oriented ncgl0884 gene, encoding a putative multidrug efflux pump protein, and in the same operon with ncgl0887, encoding a resistance, nodulation and cell division (RND) superfamily drug exporter. However, the role of AtsR is not clearly understood. RESULTS: Here we showed that dimeric AtsR directly repressed the expression of the ncgl0887-atsR operon, as well as indirectly controlled the ncgl0884 transcription. Antibiotics and toxic compounds induced the expression of ncgl0887-atsR operon. A perfect palindromic motif (5΄-TGCAA-N2-TTGCA-3΄; 12 bp) was identified in the upstream region of ncgl0887-atsR operon. Electrophoretic mobility shift assays (EMSAs) demonstrated specific binding of AtsR to this motif, and hydrogen peroxide (H2O2) blocked binding. H2O2 oxidized cysteine residues to form Cys123-Cys187 intermolecular disulfide bonds between two subunits in AtsR dimer, which altered its DNA-binding characteristics and caused its dissociation, thereby leading to derepression of the drug efflux protein. Deletion of ncgl0884 and ncgl0887 increased the susceptibilities of C. glutamicum for several toxic compounds, but overexpression of atsR decreased the drug tolerance of C. glutamicum. CONCLUSIONS: Our study revealed that AtsR was a redox regulator that sensed oxidative stress via thiol modification. The results obtained here will contribute to our understanding of the drug response mechanism not only in C. glutamicum but also in the related bacteria C. diphtheriae.


Assuntos
Corynebacterium glutamicum , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética
5.
Nanotechnology ; 33(17)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008083

RESUMO

Graphene oxide has covalently modified by chito oligosaccharides andγ-polyglutamic acid to form GO-CO-γ-PGA, which exhibits excellent performance as a drug delivery carrier, but this carrier did not have the ability to actively target. In this study, the targeting property of breast cancer tumor cell exosomes was exploited to give GO-CO-γ-PGA the ability to target breast tumor cells (MDA-MB-231), and the drug mitoxantrone (MIT) was loaded to finally form EXO-GO-CO-γ-PGA-MIT with an encapsulation efficiency of 73.02%. The pH response of EXO-GO-CO-γ-PGA showed a maximum cumulative release rate of 56.59% (pH 5.0, 120 h) and 6.73% (pH 7.4, 120 h) for MIT at different pH conditions.In vitrocellular assays showed that EXO-GO-CO-γ-PGA-MIT was more potent in killing MDA-MB-231 cells due to its targeting ability and had a significantly higher pro-apoptotic capacity compared to GO-CO-γ-PGA-MIT. The results showed that this bionic nano-intelligent drug delivery system has good drug slow release function and it can increase the local drug concentration of tumor and enhance the pro-apoptotic ability of MIT, so this newly synthesized bionic drug delivery carriers (EXO-GO-CO-γ-PGA-MIT) has potential application in breast cancer treatment.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Exossomos/química , Grafite/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Exossomos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Mitoxantrona/química , Mitoxantrona/farmacologia , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/química
6.
Microb Cell Fact ; 20(1): 77, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781264

RESUMO

Rhamnolipids have recently attracted considerable attentions because of their excellent biosurfactant performance and potential applications in agriculture, environment, biomedicine, etc., but severe foaming causes the high cost of production, restraining their commercial production and applications. To reduce or eliminate the foaming, numerous explorations have been focused on foaming factors and fermentation strategies, but a systematic summary and discussion are still lacking. Additionally, although these studies have not broken through the bottleneck of foaming, they are conducive to understanding the foaming mechanism and developing more effective rhamnolipids production strategies. Therefore, this review focuses on the effects of fermentation components and control conditions on foaming behavior and fermentation strategies responded to the severe foaming in rhamnolipids fermentation and systematically summarizes 6 impact factors and 9 fermentation strategies. Furthermore, the potentialities of 9 fermentation strategies for large-scale production are discussed and some further strategies are suggested. We hope this review can further facilitate the understanding of foaming factors and fermentation strategies as well as conducive to developing the more effective large-scale production strategies to accelerate the commercial production process of rhamnolipids.


Assuntos
Fermentação , Glicolipídeos/metabolismo , Microbiologia Industrial/métodos , Pseudomonas aeruginosa/metabolismo , Tensoativos/metabolismo , Pseudomonas aeruginosa/química
7.
Microb Cell Fact ; 20(1): 110, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082775

RESUMO

BACKGROUND: CssR, the product of the Corynebacterium glutamicum ncgl1578 gene cotranscribed with ncgl1579, is a TetR (tetracycline regulator) family repressor. Although many TetR-type regulators in C. glutamicum have been extensively described, members of the TetR family involved in the stress response remain unidentified. RESULTS: In this study, we found that CssR regulated the transcription of its own gene and the ncgl1576-ncgl1577 operon. The ncgl1576-ncgl1577 operon, which is located upstream of cssR in the orientation opposite that of the cssR operon, encodes an ATP-binding cassette (ABC), some of which are involved in the export of a wide range of antimicrobial compounds. The cssR-deletion (ΔcssR) mutant displayed increased resistance to various stresses. An imperfect palindromic motif (5'-TAA(G)TGN13CA(G)TTA-3'; 25 bp) located at the intergenic region between cssR and ncgl1577 was identified as the sole binding site for CssR. Expression of cssR and ncgl1577 was induced by antibiotics and heavy metals but not H2O2 or diamide, and the DNA-binding activity of CssR was impaired by antibiotics and heavy metals but not H2O2. Antibiotics and heavy metals caused CssR dissociation from target gene promoters, thus derepressing their transcription. Oxidant treatment neither altered the conformation of CssR nor modified its cysteine residues, indicating that the cysteine residues in CssR have no redox activity. In the ΔcssR mutant strain, genes involved in redox homeostasis also showed increased transcription levels, and the NADPH/NADP+ ratio was higher than that of the parental strain. CONCLUSION: The stress response mechanism of CssR in C. glutamicum is realized via ligand-induced conformational changes of the protein, not via cysteine oxidation-based thiol modification. Moreover, the crucial role of CssR in the stress response was demonstrated by negatively controlling the expression of the ncgl1576-ncgl1577 operon, its structural gene, and/or redox homeostasis-related genes.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Corynebacterium glutamicum/efeitos dos fármacos , DNA Bacteriano , Regulação Bacteriana da Expressão Gênica , Homeostase , Metais Pesados/farmacologia , Óperon , Oxirredução , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Deleção de Sequência
8.
Biochem J ; 477(19): 3709-3727, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32926092

RESUMO

Corynebacterium glutamicum, an important industrial and model microorganism, inevitably encountered stress environment during fermentative process. Therefore, the ability of C. glutamicum to withstand stress and maintain the cellular redox balance was vital for cell survival and enhancing fermentation efficiency. To robustly survive, C. glutamicum has been equipped with many types of redox sensors. Although cysteine oxidation-based peroxide-sensing regulators have been well described in C. glutamicum, redox sensors involving in multiple environmental stress response remained elusive. Here, we reported an organic peroxide- and antibiotic-sensing MarR (multiple antibiotics resistance regulators)-type regulator, called OasR (organic peroxide- and antibiotic-sensing regulator). The OasR regulator used Cys95 oxidation to sense oxidative stress to form S-mycothiolated monomer or inter-molecular disulfide-containing dimer, resulting in its dissociation from the target DNA promoter. Transcriptomics uncovered the strong up-regulation of many multidrug efflux pump genes and organic peroxide stress-involving genes in oasR mutant, consistent with the phenomenon that oasR mutant showed a reduction in sensitivity to antibiotic and organic peroxide. Importantly, the addition of stress-associated ligands such as cumene hydroperoxide and streptomycin induced oasR and multidrug efflux pump protein NCgl1020 expression in vivo. We speculated that cell resistance to antibiotics and organic peroxide correlated with stress response-induced up-regulation of genes expression. Together, the results revealed that OasR was a key MarR-type redox stress-responsive transcriptional repressor, and sensed oxidative stress generated through hydroxyl radical formation to mediate antibiotic resistance in C. glutamicum.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Farmacorresistência Bacteriana , Peroxidases/biossíntese , Proteínas Repressoras/metabolismo , Transcrição Gênica , Proteínas de Bactérias/genética , Corynebacterium glutamicum/genética , Oxirredução , Estresse Oxidativo , Peroxidases/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/genética
9.
Microb Cell Fact ; 19(1): 189, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008408

RESUMO

BACKGROUND: Corynebacterium glutamicum thrives under oxidative stress caused by the inevitably extreme environment during fermentation as it harbors antioxidative stress genes. Antioxidant genes are controlled by pathway-specific sensors that act in response to growth conditions. Although many families of oxidation-sensing regulators in C. glutamicum have been well described, members of the xenobiotic-response element (XRE) family, involved in oxidative stress, remain elusive. RESULTS: In this study, we report a novel redox-sensitive member of the XER family, MsrR (multiple stress resistance regulator). MsrR is encoded as part of the msrR-3-mst (3-mercaptopyruvate sulfurtransferase) operon; msrR-3-mst is divergent from multidrug efflux protein MFS. MsrR was demonstrated to bind to the intergenic region between msrR-3-mst and mfs. This binding was prevented by an MsrR oxidation-mediated increase in MsrR dimerization. MsrR was shown to use Cys62 oxidation to sense oxidative stress, resulting in its dissociation from the promoter. Elevated expression of msrR-3-mst and mfs was observed under stress. Furthermore, a ΔmsrR mutant strain displayed significantly enhanced growth, while the growth of strains lacking either 3-mst or mfs was significantly inhibited under stress. CONCLUSION: This report is the first to demonstrate the critical role of MsrR-3-MST-MFS in bacterial stress resistance.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/genética , Estresse Oxidativo , Compostos de Sulfidrila/metabolismo , Xenobióticos/metabolismo , Proteínas de Bactérias/genética , Corynebacterium glutamicum/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Oxirredução , Regiões Promotoras Genéticas , Transcrição Gênica
10.
Biochem J ; 476(21): 3141-3159, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31689352

RESUMO

MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)-uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882-ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to ß-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR-uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/efeitos dos fármacos , Corynebacterium glutamicum/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Farmacorresistência Bacteriana , Óperon , Regiões Promotoras Genéticas , Fatores de Transcrição/química , Fatores de Transcrição/genética
11.
Proc Natl Acad Sci U S A ; 114(11): E2233-E2242, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28242693

RESUMO

Type VI secretion system (T6SS) is a versatile protein export machinery widely distributed in Gram-negative bacteria. Known to translocate protein substrates to eukaryotic and prokaryotic target cells to cause cellular damage, the T6SS has been primarily recognized as a contact-dependent bacterial weapon for microbe-host and microbial interspecies competition. Here we report contact-independent functions of the T6SS for metal acquisition, bacteria competition, and resistance to oxidative stress. We demonstrate that the T6SS-4 in Burkholderia thailandensis is critical for survival under oxidative stress and is regulated by OxyR, a conserved oxidative stress regulator. The T6SS-4 is important for intracellular accumulation of manganese (Mn2+) under oxidative stress. Next, we identified a T6SS-4-dependent Mn2+-binding effector TseM, and its interacting partner MnoT, a Mn2+-specific TonB-dependent outer membrane transporter. Similar to the T6SS-4 genes, expression of mnoT is regulated by OxyR and is induced under oxidative stress and low Mn2+ conditions. Both TseM and MnoT are required for efficient uptake of Mn2+ across the outer membrane under Mn2+-limited and -oxidative stress conditions. The TseM-MnoT-mediated active Mn2+ transport system is also involved in contact-independent bacteria-bacteria competition and bacterial virulence. This finding provides a perspective for understanding the mechanisms of metal ion uptake and the roles of T6SS in bacteria-bacteria competition.


Assuntos
Burkholderia/genética , Burkholderia/metabolismo , Manganês/metabolismo , Estresse Oxidativo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação , Transporte Biológico , Burkholderia/classificação , Infecções por Burkholderia/microbiologia , Regulação Bacteriana da Expressão Gênica , Larva/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mariposas/microbiologia , Mutação , Óperon , Estresse Oxidativo/genética , Filogenia , Ligação Proteica , Conformação Proteica , Proteínas Repressoras/metabolismo , Elementos de Resposta , Análise de Sequência de DNA , Especificidade por Substrato , Sistemas de Secreção Tipo VI/química , Virulência
12.
Microb Cell Fact ; 18(1): 182, 2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655587

RESUMO

BACKGROUND: Oxidative stress caused by inevitable hostile conditions during fermentative process was the most serious threat to the survival of the well-known industrial microorganism Corynebacterium glutamicum. To survive, C. glutamicum developed several antioxidant defenses including millimolar concentrations of mycothiol (MSH) and protective enzymes. Glutathione (GSH) S-transferases (GSTs) with essentially defensive role in oxidative stress have been well defined in numerous microorganisms, while their physiological and biochemical functions remained elusive in C. glutamicum thus far. RESULTS: In the present study, we described protein NCgl1216 belonging to a novel MSH S-transferase Xi class (MstX), considered as the equivalent of GST Xi class (GSTX). MstX had a characteristic conserved catalytic motif (Cys-Pro-Trp-Ala, C-P-W-A). MstX was active as thiol transferase, dehydroascorbate reductase, mycothiolyl-hydroquinone reductase and MSH peroxidase, while it showed null activity toward canonical GSTs substrate as 1-chloro-2,4-dinitrobenzene (CDNB) and GST Omega's specific substance glutathionyl-acetophenones, indicating MstX had some biochemical characteristics related with mycoredoxin (Mrx). Site-directed mutagenesis showed that, among the two cysteine residues of the molecule, only the residue at position 67 was required for the activity. Moreover, the residues adjacent to the active Cys67 were also important for activity. These results indicated that the thiol transferase of MstX operated through a monothiol mechanism. In addition, we found MstX played important role in various stress resistance. The lack of C. glutamicum mstX gene resulted in significant growth inhibition and increased sensitivity under adverse stress condition. The mstX expression was induced by stress. CONCLUSION: Corynebacterium glutamicum MstX might be critically involved in response to oxidative conditions, thereby giving new insight in how C. glutamicum survived oxidative stressful conditions.


Assuntos
Proteínas de Bactérias/química , Corynebacterium glutamicum/metabolismo , Cisteína/metabolismo , Glutationa Transferase/química , Glicopeptídeos/metabolismo , Inositol/metabolismo , Oxirredução , Estresse Oxidativo
13.
Biochem J ; 475(24): 3979-3995, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30478154

RESUMO

The MarR family is unique to both bacteria and archaea. The members of this family, one of the most prevalent families of transcriptional regulators in bacteria, enable bacteria to adapt to changing environmental conditions, such as the presence of antibiotics, toxic chemicals, or reactive oxygen species (ROS), mainly by thiol-disulfide switches. Although the genome of Corynebacterium glutamicum encodes a large number of the putative MarR-type transcriptional regulators, their physiological and biochemical functions have so far been limited to only two proteins, regulator of oxidative stress response RosR and quinone oxidoreductase regulator QosR. Here, we report that the ncgl2617 gene (cosR) of C. glutamicum encoding an MarR-type transcriptional regulator plays an important role in oxidative stress resistance. The cosR null mutant is found to be more resistant to various oxidants and antibiotics, accompanied by a decrease in ROS production and protein carbonylation levels under various stresses. Protein biochemical function analysis shows that two Cys residues presenting at 49 and 62 sites in CosR are redox-active. They form intermolecular disulfide bonds in CosR under oxidative stress. This CosR oxidation leads to its dissociation from promoter DNA, depression of the target DNA, and increased oxidative stress resistance of C. glutamicum. Together, the results reveal that CosR is a redox-sensitive regulator that senses peroxide stress to mediate oxidative stress resistance in C. glutamicum.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Farmacorresistência Bacteriana Múltipla/fisiologia , Estresse Oxidativo/fisiologia , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Corynebacterium glutamicum/genética , Elementos Reguladores de Transcrição/fisiologia , Proteínas Repressoras/genética , Fatores de Transcrição/genética
14.
Microb Cell Fact ; 17(1): 200, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30587200

RESUMO

BACKGROUND: Corynebacterium glutamicum is a well-known producer of various L-amino acids in industry. During the fermenting process, C. glutamicum unavoidably encounters oxidative stress due to a specific reactive oxygen species (ROS) produced by consistent adverse conditions. To combat the ROS, C. glutamicum has developed many common disulfide bond-based regulatory devices to control a specific set of antioxidant genes. However, nothing is known about the mixed disulfide between the protein thiol groups and the mycothiol (MSH) (S-mycothiolation)-based sensor. In addition, no OhrR (organic hydroperoxide resistance regulator) homologs and none of the organic hydroperoxide reductase (Ohr) sensors have been described in the alkyl hydroperoxide reductase CF-missing C. glutamicum, while organic hydroperoxides (OHPs)-specific Ohr was a core detoxification system. RESULTS: In this study, we showed that the C. glutamicum OhsR acted as an OHPs sensor that activated ohr expression. OhsR conferred resistance to cumene hydroperoxide (CHP) and t-butyl hydroperoxide but not H2O2, hypochlorous acid, and diamide; this outcome was substantiated by the fact that the ohsR-deficient mutant was sensitive to OHPs but not inorganic peroxides. The DNA binding activity of OhsR was specifically activated by CHP. Mutational analysis of the two cysteines (Cys125 and Cys261) showed that Cys125 was primarily responsible for the activation of DNA binding. The oxidation of Cys125 produced a sulfenic acid (C125-SOH) that subsequently reacted with MSH to generate S-mycothiolation that was required to activate the ohr expression. Therefore, OhsR regulated the ohr expression using an S-mycothiolation mechanism in vivo. CONCLUSION: This is the first report demonstrating that the regulatory OhsR specifically sensed OHPs stress and responded to it by activating a specific ohr gene under its control using an S-mycothiolated mechanism.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Fatores de Transcrição/genética , Estresse Oxidativo , Peróxidos
15.
PLoS Pathog ; 11(7): e1005020, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26134274

RESUMO

Type VI secretion systems (T6SSs) are widespread multi-component machineries that translocate effectors into either eukaryotic or prokaryotic cells, for virulence or for interbacterial competition. Herein, we report that the T6SS-4 from Yersinia pseudotuberculosis displays an unexpected function in the transportation of Zn2+ to combat diverse stresses and host immunity. Environmental insults such as oxidative stress induce the expression of T6SS-4 via OxyR, the transcriptional factor that also regulates many oxidative response genes. Zinc transportation is achieved by T6SS-4-mediated translocation of a novel Zn2+-binding protein substrate YezP (YPK_3549), which has the capacity to rescue the sensitivity to oxidative stress exhibited by T6SS-4 mutants when added to extracellular milieu. Disruption of the classic zinc transporter ZnuABC together with T6SS-4 or yezP results in mutants that almost completely lost virulence against mice, further highlighting the importance of T6SS-4 in resistance to host immunity. These results assigned an unconventional role to T6SSs, which will lay the foundation for studying novel mechanisms of metal ion uptake by bacteria and the role of this process in their resistance to host immunity and survival in harmful environments.


Assuntos
Adaptação Fisiológica/imunologia , Sistemas de Secreção Tipo VI/metabolismo , Infecções por Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/patogenicidade , Animais , Western Blotting , Ensaio de Desvio de Mobilidade Eletroforética , Camundongos , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico/imunologia , Sistemas de Secreção Tipo VI/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia , Zinco/metabolismo
16.
Arch Microbiol ; 199(2): 325-334, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27766354

RESUMO

Corynebacterium glutamicum can survive by using ferulic acid as the sole carbon source. In this study, we assessed the response of C. glutamicum to ferulic acid stress by means of a global transcriptional response analysis. The transcriptional data showed that several genes involved in degradation of ferulic acid were affected. Moreover, several genes related to the stress response; protein protection or degradation and DNA repair; replication, transcription and translation; and the cell envelope were differentially expressed. Deletion of the katA or sigE gene in C. glutamicum resulted in a decrease in cell viability under ferulic acid stress. These insights will facilitate further engineering of model industrial strains, with enhanced tolerance to ferulic acid to enable easy production of biofuels from lignocellulose.


Assuntos
Corynebacterium glutamicum/genética , Ácidos Cumáricos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica
17.
Int J Syst Evol Microbiol ; 66(10): 4282-4288, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27474082

RESUMO

A bacterial strain, designated as ZFJT-2T, was isolated from the stem of Geum aleppicum Jacq. collected from Taibai Mountain in Shaanxi Province, north-west China. Cells of strain ZFJT-2T were Gram-stain-negative, strictly aerobic, rod-shaped and motile by means of a single polar flagellum. The major fatty acids were summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c), C16 : 0, 11-methyl C18 : 1ω7c and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), and the DNA G+C content was 58.3 mol% (HPLC). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain ZFJT-2T was a member of the genus Rhizobium and was most closely related to Rhizobium giardinii KACC 10720T (98.6 % similarity) and Rhizobium herbae CCBAU 83011T (98.5 %). The low levels of sequence similarity found between the atpD, recA and glnII gene sequences of strain ZFJT-2T and those of recognized species of the genus Rhizobium (no more than 94.4, 87.2 and 89.5 %, respectively) indicated that it may represent a separate species of the genus Rhizobium. The DNA-DNA relatedness values for strain ZFJT-2T with respect to R. giardinii KACC 10720T and R. herbae CCBAU 83011T were 17.6 and 41.9 %, respectively. On the basis of phenotypic, phylogenetic and genotypic data, strain ZFJT-2T is considered to represent a novel species of the genus Rhizobium, for which the name Rhizobium gei sp. nov. is proposed. The type strain is ZFJT-2T (=CCTCC AB 2013015T=KCTC 32301T=LMG 27603T).


Assuntos
Geum/microbiologia , Filogenia , Rhizobium/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Endófitos/classificação , Ácidos Graxos/química , Genes Bacterianos , Hibridização de Ácido Nucleico , Caules de Planta/microbiologia , RNA Ribossômico 16S/genética , Rhizobium/genética , Rhizobium/isolamento & purificação , Análise de Sequência de DNA
18.
Biochem J ; 469(1): 45-57, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25891483

RESUMO

Previous studies have identified a putative mycothiol peroxidase (MPx) in Corynebacterium glutamicum that shared high sequence similarity to sulfur-containing Gpx (glutathione peroxidase; CysGPx). In the present study, we investigated the MPx function by examining its potential peroxidase activity using different proton donors. The MPx degrades hydrogen peroxide and alkyl hydroperoxides in the presence of either the thioredoxin/Trx reductase (Trx/TrxR) or the mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) regeneration system. Mrx1 and Trx employ different mechanisms in reducing MPx. For the Mrx1 system, the catalytic cycle of MPx involves mycothiolation/demycothiolation on the Cys(36) sulfenic acid via the monothiol reaction mechanism. For the Trx system, the catalytic cycle of MPx involves formation of an intramolecular disulfide bond between Cys(36) and Cys(79) that is pivotal to the interaction with Trx. Both the Mrx1 pathway and the Trx pathway are operative in reducing MPx under stress conditions. Expression of mpx markedly enhanced the resistance to various peroxides and decreased protein carbonylation and intracellular reactive oxygen species (ROS) accumulation. The expression of mpx was directly activated by the stress-responsive extracytoplasmic function-σ (ECF-σ) factor [SigH]. Based on these findings, we propose that the C. glutamicum MPx represents a new type of GPx that uses both mycoredoxin and Trx systems for oxidative stress response.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/enzimologia , Estresse Oxidativo/fisiologia , Peroxidases/metabolismo , Peróxidos/metabolismo , Tiorredoxinas/metabolismo , Proteínas de Bactérias/genética , Corynebacterium glutamicum/genética , Peroxidases/genética , Tiorredoxinas/genética
19.
Biotechnol Lett ; 38(7): 1221-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27053080

RESUMO

OBJECTIVES: To investigate mycothiol peroxidase (MPx) of Corynebacterium glutamicum that is a novel CysGPx family peroxidase using both the mycoredoxin and thioredoxin reducing systems as proton donors for peroxide detoxification and may be involved in the relief of acid stress. RESULTS: A Δmpx mutant exhibited significantly decreased resistance to acid stress and markedly increased accumulation of reactive oxygen species (ROS) and protein carbonylation levels in vivo. Over-expression of mpx increased the resistance of C. glutamicum to acid stress by reducing ROS accumulation. The stress-responsive extracytoplasmic function-sigma (ECF-σ) factor, SigH, mediated acid-induced expression of mpx in the wild-type under acid conditions, which in turn directly contributed to tolerance to acid stress. CONCLUSION: MPx is essential for combating acid stress by reducing intracellular ROS levels induced by acid stress in C. glutamicum, which adds a new dimension to the general physiological functions of CysGPx.


Assuntos
Corynebacterium glutamicum/enzimologia , Cisteína/metabolismo , Glicopeptídeos/metabolismo , Inositol/metabolismo , Peroxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácidos/farmacologia , Corynebacterium glutamicum/efeitos dos fármacos , Carbonilação Proteica , Fator sigma/metabolismo
20.
Appl Environ Microbiol ; 81(8): 2781-96, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681179

RESUMO

Oxidation of methionine leads to the formation of the S and R diastereomers of methionine sulfoxide (MetO), which can be reversed by the actions of two structurally unrelated classes of methionine sulfoxide reductase (Msr), MsrA and MsrB, respectively. Although MsrAs have long been demonstrated in numerous bacteria, their physiological and biochemical functions remain largely unknown in Actinomycetes. Here, we report that a Corynebacterium glutamicum methionine sulfoxide reductase A (CgMsrA) that belongs to the 3-Cys family of MsrAs plays important roles in oxidative stress resistance. Deletion of the msrA gene in C. glutamicum resulted in decrease of cell viability, increase of ROS production, and increase of protein carbonylation levels under various stress conditions. The physiological roles of CgMsrA in resistance to oxidative stresses were corroborated by its induced expression under various stresses, regulated directly by the stress-responsive extracytoplasmic-function (ECF) sigma factor SigH. Activity assays performed with various regeneration pathways showed that CgMsrA can reduce MetO via both the thioredoxin/thioredoxin reductase (Trx/TrxR) and mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) pathways. Site-directed mutagenesis confirmed that Cys56 is the peroxidatic cysteine that is oxidized to sulfenic acid, while Cys204 and Cys213 are the resolving Cys residues that form an intramolecular disulfide bond. Mrx1 reduces the sulfenic acid intermediate via the formation of an S-mycothiolated MsrA intermediate (MsrA-SSM) which is then recycled by mycoredoxin and the second molecule of mycothiol, similarly to the glutathione/glutaredoxin/glutathione reductase (GSH/Grx/GR) system. However, Trx reduces the Cys204-Cys213 disulfide bond in CgMsrA produced during MetO reduction via the formation of a transient intermolecular disulfide bond between Trx and CgMsrA. While both the Trx/TrxR and Mrx1/Mtr/MSH pathways are operative in reducing CgMsrA under stress conditions in vivo, the Trx/TrxR pathway alone is sufficient to reduce CgMsrA under normal conditions. Based on these results, a catalytic model for the reduction of CgMsrA by Mrx1 and Trx is proposed.


Assuntos
Proteínas de Bactérias/genética , Corynebacterium glutamicum/fisiologia , Metionina Sulfóxido Redutases/genética , Estresse Oxidativo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/genética , Metionina Sulfóxido Redutases/química , Metionina Sulfóxido Redutases/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA