Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294366

RESUMO

Quantitative microscopy workflows have evolved dramatically over the past years, progressively becoming more complex with the emergence of deep learning. Long-standing challenges such as three-dimensional segmentation of complex microscopy data can finally be addressed, and new imaging modalities are breaking records in both resolution and acquisition speed, generating gigabytes if not terabytes of data per day. With this shift in bioimage workflows comes an increasing need for efficient orchestration and data management, necessitating multitool interoperability and the ability to span dedicated computing resources. However, existing solutions are still limited in their flexibility and scalability and are usually restricted to offline analysis. Here we introduce Arkitekt, an open-source middleman between users and bioimage apps that enables complex quantitative microscopy workflows in real time. It allows the orchestration of popular bioimage software locally or remotely in a reliable and efficient manner. It includes visualization and analysis modules, but also mechanisms to execute source code and pilot acquisition software, making 'smart microscopy' a reality.

2.
EMBO J ; 41(19): e111265, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36004506

RESUMO

Accumulation of aggregates of the microtubule-binding protein Tau is a pathological hallmark of Alzheimer's disease. While Tau is thought to primarily associate with microtubules, it also interacts with and localizes to the plasma membrane. However, little is known about how Tau behaves and organizes at the plasma membrane of live cells. Using quantitative, single-molecule imaging, we show that Tau exhibits spatial and kinetic heterogeneity near the plasma membrane of live cells, resulting in the formation of nanometer-sized hot spots. The hot spots lasted tens of seconds, much longer than the short dwell time (∼ 40 ms) of Tau on microtubules. Pharmacological and biochemical disruption of Tau/microtubule interactions did not prevent hot spot formation, suggesting that these are different from the reported Tau condensation on microtubules. Although cholesterol removal has been shown to reduce Tau pathology, its acute depletion did not affect Tau hot spot dynamics. Our study identifies an intrinsic dynamic property of Tau near the plasma membrane that may facilitate the formation of assembly sites for Tau to assume its physiological and pathological functions.


Assuntos
Microtúbulos , Imagem Individual de Molécula , Membrana Celular/metabolismo , Cinética , Microtúbulos/metabolismo , Proteínas tau/metabolismo
3.
Nat Methods ; 20(2): 259-267, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36765136

RESUMO

Single-molecule localization microscopy (SMLM) generates data in the form of coordinates of localized fluorophores. Cluster analysis is an attractive route for extracting biologically meaningful information from such data and has been widely applied. Despite a range of cluster analysis algorithms, there exists no consensus framework for the evaluation of their performance. Here, we use a systematic approach based on two metrics to score the success of clustering algorithms in simulated conditions mimicking experimental data. We demonstrate the framework using seven diverse analysis algorithms: DBSCAN, ToMATo, KDE, FOCAL, CAML, ClusterViSu and SR-Tesseler. Given that the best performer depended on the underlying distribution of localizations, we demonstrate an analysis pipeline based on statistical similarity measures that enables the selection of the most appropriate algorithm, and the optimized analysis parameters for real SMLM data. We propose that these standard simulated conditions, metrics and analysis pipeline become the basis for future analysis algorithm development and evaluation.


Assuntos
Algoritmos , Imagem Individual de Molécula , Análise por Conglomerados , Benchmarking
4.
Nat Rev Neurosci ; 22(4): 237-255, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33712727

RESUMO

The brain is arguably the most complex organ. The branched and extended morphology of nerve cells, their subcellular complexity, the multiplicity of brain cell types as well as their intricate connectivity and the scattering properties of brain tissue present formidable challenges to the understanding of brain function. Neuroscientists have often been at the forefront of technological and methodological developments to overcome these hurdles to visualize, quantify and modify cell and network properties. Over the last few decades, the development of advanced imaging methods has revolutionized our approach to explore the brain. Super-resolution microscopy and tissue imaging approaches have recently exploded. These instrumentation-based innovations have occurred in parallel with the development of new molecular approaches to label protein targets, to evolve new biosensors and to target them to appropriate cell types or subcellular compartments. We review the latest developments for labelling and functionalizing proteins with small localization and functionalized reporters. We present how these molecular tools are combined with the development of a wide variety of imaging methods that break either the diffraction barrier or the tissue penetration depth limits. We put these developments in perspective to emphasize how they will enable step changes in our understanding of the brain.


Assuntos
Encéfalo/citologia , Microscopia/métodos , Neuroglia/citologia , Neurônios/citologia , Coloração e Rotulagem/métodos , Animais , Humanos
5.
Nat Methods ; 19(7): 881-892, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35697835

RESUMO

Current imaging approaches limit the ability to perform multi-scale characterization of three-dimensional (3D) organotypic cultures (organoids) in large numbers. Here, we present an automated multi-scale 3D imaging platform synergizing high-density organoid cultures with rapid and live 3D single-objective light-sheet imaging. It is composed of disposable microfabricated organoid culture chips, termed JeWells, with embedded optical components and a laser beam-steering unit coupled to a commercial inverted microscope. It permits streamlining organoid culture and high-content 3D imaging on a single user-friendly instrument with minimal manipulations and a throughput of 300 organoids per hour. We demonstrate that the large number of 3D stacks that can be collected via our platform allows training deep learning-based algorithms to quantify morphogenetic organizations of organoids at multi-scales, ranging from the subcellular scale to the whole organoid level. We validated the versatility and robustness of our approach on intestine, hepatic, neuroectoderm organoids and oncospheres.


Assuntos
Imageamento Tridimensional , Organoides , Intestinos
6.
Mol Psychiatry ; 28(2): 946-962, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36258016

RESUMO

Fyn is a Src kinase that controls critical signalling cascades and has been implicated in learning and memory. Postsynaptic enrichment of Fyn underpins synaptotoxicity in dementias such as Alzheimer's disease and frontotemporal lobar degeneration with Tau pathology (FTLD-Tau). The FLTD P301L mutant Tau is associated with a higher propensity to undergo liquid-liquid phase separation (LLPS) and form biomolecular condensates. Expression of P301L mutant Tau promotes aberrant trapping of Fyn in nanoclusters within hippocampal dendrites by an unknown mechanism. Here, we used single-particle tracking photoactivated localisation microscopy to demonstrate that the opening of Fyn into its primed conformation promotes its nanoclustering in dendrites leading to increased Fyn/ERK/S6 downstream signalling. Preventing the auto-inhibitory closed conformation of Fyn through phospho-inhibition or through perturbation of its SH3 domain increased Fyn's nanoscale trapping, whereas inhibition of the catalytic domain had no impact. By combining pharmacological and genetic approaches, we demonstrate that P301L Tau enhanced both Fyn nanoclustering and Fyn/ERK/S6 signalling via its ability to form biomolecular condensates. Together, our findings demonstrate that Fyn alternates between a closed and an open conformation, the latter being enzymatically active and clustered. Furthermore, pathogenic immobilisation of Fyn relies on the ability of P301L Tau to form biomolecular condensates, thus highlighting the critical importance of LLPS in controlling nanoclustering and downstream intracellular signalling events.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Condensados Biomoleculares , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Doença de Alzheimer/genética , Degeneração Lobar Frontotemporal/metabolismo
7.
Nature ; 557(7705): 381-386, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29720660

RESUMO

ß-arrestins are critical regulator and transducer proteins for G-protein-coupled receptors (GPCRs). ß-arrestin is widely believed to be activated by forming a stable and stoichiometric GPCR-ß-arrestin scaffold complex, which requires and is driven by the phosphorylated tail of the GPCR. Here we demonstrate a distinct and additional mechanism of ß-arrestin activation that does not require stable GPCR-ß-arrestin scaffolding or the GPCR tail. Instead, it occurs through transient engagement of the GPCR core, which destabilizes a conserved inter-domain charge network in ß-arrestin. This promotes capture of ß-arrestin at the plasma membrane and its accumulation in clathrin-coated endocytic structures (CCSs) after dissociation from the GPCR, requiring a series of interactions with membrane phosphoinositides and CCS-lattice proteins. ß-arrestin clustering in CCSs in the absence of the upstream activating GPCR is associated with a ß-arrestin-dependent component of the cellular ERK (extracellular signal-regulated kinase) response. These results delineate a discrete mechanism of cellular ß-arrestin function that is activated catalytically by GPCRs.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Animais , Biocatálise , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Fosfatidilinositóis/metabolismo , Transporte Proteico , Receptores Acoplados a Proteínas G/química , beta-Arrestinas/química
8.
Proc Natl Acad Sci U S A ; 117(39): 24526-24533, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929031

RESUMO

Hippocampal pyramidal neurons are characterized by a unique arborization subdivided in segregated dendritic domains receiving distinct excitatory synaptic inputs with specific properties and plasticity rules that shape their respective contributions to synaptic integration and action potential firing. Although the basal regulation and plastic range of proximal and distal synapses are known to be different, the composition and nanoscale organization of key synaptic proteins at these inputs remains largely elusive. Here we used superresolution imaging and single nanoparticle tracking in rat hippocampal neurons to unveil the nanoscale topography of native GluN2A- and GluN2B-NMDA receptors (NMDARs)-which play key roles in the use-dependent adaptation of glutamatergic synapses-along the dendritic arbor. We report significant changes in the nanoscale organization of GluN2B-NMDARs between proximal and distal dendritic segments, whereas the topography of GluN2A-NMDARs remains similar along the dendritic tree. Remarkably, the nanoscale organization of GluN2B-NMDARs at proximal segments depends on their interaction with calcium/calmodulin-dependent protein kinase II (CaMKII), which is not the case at distal segments. Collectively, our data reveal that the nanoscale organization of NMDARs changes along dendritic segments in a subtype-specific manner and is shaped by the interplay with CaMKII at proximal dendritic segments, shedding light on our understanding of the functional diversity of hippocampal glutamatergic synapses.


Assuntos
Dendritos/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dendritos/genética , Ratos , Receptores de N-Metil-D-Aspartato/genética , Sinapses/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(25): 14503-14511, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513712

RESUMO

The nanoscale co-organization of neurotransmitter receptors facing presynaptic release sites is a fundamental determinant of their coactivation and of synaptic physiology. At excitatory synapses, how endogenous AMPARs, NMDARs, and mGluRs are co-organized inside the synapse and their respective activation during glutamate release are still unclear. Combining single-molecule superresolution microscopy, electrophysiology, and modeling, we determined the average quantity of each glutamate receptor type, their nanoscale organization, and their respective activation. We observed that NMDARs form a unique cluster mainly at the center of the PSD, while AMPARs segregate in clusters surrounding the NMDARs. mGluR5 presents a different organization and is homogenously dispersed at the synaptic surface. From these results, we build a model predicting the synaptic transmission properties of a unitary synapse, allowing better understanding of synaptic physiology.


Assuntos
Modelos Neurológicos , Neurônios/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Microscopia Intravital , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Imagem Individual de Molécula
10.
Nat Methods ; 16(12): 1263-1268, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636458

RESUMO

Super-resolution microscopy offers tremendous opportunities to unravel the complex and dynamic architecture of living cells. However, current super-resolution microscopes are well suited for revealing protein distributions or cell morphology, but not both. We present a super-resolution platform that permits correlative single-molecule imaging and stimulated emission depletion microscopy in live cells. It gives nanoscale access to the positions and movements of synaptic proteins within the morphological context of growth cones and dendritic spines.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Animais , Células Cultivadas , Feminino , Humanos , Camundongos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA