Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cancer ; 129(21): 3390-3404, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37498973

RESUMO

BACKGROUND: The published literature on hematological, clinical, flowcytometric-immunophenotyping, and minimal residual disease outcomes of the prognostically important genetic subtypes of acute lymphoblastic leukemia (ALL) is scarce from low-income countries. For newer classifications such as BCR::ABL1-like ALLs, the scarcity of patient-level data is even more pronounced. METHODS: The authors performed comprehensive detection of recurrent gene fusions and BCR::ABL1-like ALL cases followed by immunophenotypic profiling and obtained clinical outcome parameters for a large cohort (n = 1021) of patients from India. This cohort included a significant number of patients with BCR::ABL1-like ALL subtype and other genetic subtypes of ALL. RESULTS: Patients with BCR::ABL1-positive and BCR::ABL1-like ALL were significantly older, had male preponderance, and expressed a higher white blood cell count than BCR::ABL1-negative cases (p < .05). Logistic regression modeling of B-lineage-ALL (B-ALL) subtypes revealed that cluster of differentiation (CD)36 is a strong statistically significant predictive marker of BCR::ABL1-like ALL (p < .05). Furthermore, patients with BCR::ABL1-like ALLs show a significantly higher frequency of CD36 expression compared to BCR::ABL1-negative ALLs (p < .05). In terms of clinical symptoms, lymphadenopathy is a strong statistically significant predictive marker in BCR::ABL1-like ALLs compared to BCR::ABL1-negative ALL cases (p < .05). In terms of treatment outcomes, minimal residual disease (MRD) positivity in BCR::ABL1-positive ALL cases were statistically significant (p < .05), and BCR::ABL1-like ALL cases had high MRD-positivity as compared to BCR::ABL1-negative ALL cases but did not show statistical significance. CONCLUSIONS: The findings evince the use of novel therapies and personalized treatment regimens to improve the overall survival of the newer incorporated entities in B-ALLs. This is the first report characterizing the hematological, clinical, flowcytometric-immunophenotyping, and minimal residual disease outcomes of the prognostically significant subtypes of ALLs in patients from India. PLAIN LANGUAGE SUMMARY: Characterizing the hematological, clinical, flowcytometric-immunophenotyping, and minimal residual disease outcomes of the prognostically significant subtypes (n = 1021) of acute lymphoblastic leukemia (ALLs) in patients from India. We have made two independent logistic regression models of cluster of differentiation (CD) markers and clinical symptoms to differentiate prognostically significant subtypes of ALLs. Logistic regression analysis of CD markers revealed CD36 as a strong predictor in BCR::ABL1-like ALL cases compared to BCR::ABL1-negative ALL cases. Logistic regression analysis of clinical symptoms revealed lymphadenopathy significantly predicts BCR::ABL1-like ALLs (p < .05). In terms of treatment outcomes, BCR::ABL1-positive ALL had statistically significant minimal residual disease (MRD) (p < .05), and BCR::ABL1-like ALL cases had high MRD-positivity but did not show statistical significance as compared to BCR::ABL1-negative ALLs.

2.
Clin Exp Med ; 23(8): 4539-4551, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37470909

RESUMO

Gene expression profiling is the criterion standard for recognizing Ph-like ALL signatures among B-ALLs. The prerequisite of GEP is the accurate normalization of target genes with stable expression of housekeeping genes in a quantitative PCR. HKGs exhibit differential expression in the different experimental conditions and affect the target genes' expression, leading to imprecise qPCR results. The selection of stable HKGs is crucial in GEP experiments, especially in identifying high-risk Ph-like ALL cases. We have evaluated the expression stability of nine HKGs (GAPDH, ACTB, GUSB, RNA18S, EEF2, PGK1, B2M, TBP and ABL1) in identified Ph-like ALLs and Ph-negative (n = 23 each) using six algorithms, 4 traditional softwares; geNorm, BestKeeper, NormFinder, Delta Cq value method, and two algorithms, RefFinderTM and ComprFinder. Further, we have validated the expression of 8 overexpressed normalized genes in Ph-like ALL cases (JCHAIN, CA6, MUC4, SPATS2L, BMPR1B, CRLF2, ADGRF1 and NRXN3). GeNorm, BestKeeper, NormFinder, Delta Cq value method, RefFinderTM and ComprFinder algorithm analysis revealed that EEF2, GAPDH, and PGK1 form the best representative HKGs in Ph-like ALL cases, while RNA18s, ß-actin, and ABL1 in Ph-negative ALLs. Lastly, we performed a correlation analysis and found that the combination of EEF2, GAPDH, and PGK1 represents the best combination with a very high correlation in Ph-like ALL cases. This is the first report that shows EEF2, GAPDH, and PGK1 are the best HKG genes and can be used in the diagnostic panel of Ph-like ALL cases using qPCR at baseline diagnosis.


Assuntos
Perfilação da Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Perfilação da Expressão Gênica/métodos , Análise em Microsséries , Genes Essenciais , Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Padrões de Referência , Reação em Cadeia da Polimerase em Tempo Real/métodos
3.
J Biosci ; 30(4): 483-90, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16184010

RESUMO

Trigonella foenum graecum seed powder (TSP) and sodium orthovanadate (SOV) have been reported to have antidiabetic effects. However, SOV exerts hypoglycemic effects at relatively high doses with several toxic effects. We used low doses of vanadate in combination with TSP and evaluated their antidiabetic effects on anti-oxidant enzymes and membrane-linked functions in diabetic rat brains. In rats, diabetes was induced by alloxan monohydrate (15 mg/100 g body wt.) and they were treated with 2 IU insulin, 0.6 mg/ml SOV, 5% TSP and a combination of 0.2 mg/ml SOV with 5% TSP for 21 days. Blood glucose levels, activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), Na+/K+ ATPase, membrane lipid peroxidation and fluidity were determined in different fractions of whole brain after 21 days of treatment. Diabetic rats showed high blood glucose (P less than 0.001), decreased activities of SOD, catalase and Na+/K+ ATPase (P less than 0.01, P less than 0.001 and P less than 0.01), increased levels of GPx and MDA (P less than 0.01 and P less than 0.001) and decreased membrane fluidity (P less than 0.01). Treatment with different antidiabetic compounds restored the above-altered parameters. Combined dose of Trigonella and vanadate was found to be the most effective treatment in normalizing these alterations. Lower doses of vanadate could be used in combination with TSP to effectively counter diabetic alterations without any toxic effects.


Assuntos
Encéfalo/metabolismo , Membrana Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Oligoelementos/farmacologia , Trigonella/metabolismo , Vanádio/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Ratos , Ratos Wistar , Sementes , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Vanadatos/farmacologia
4.
Antioxid Redox Signal ; 20(7): 1126-67, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23991888

RESUMO

Abstract Reactive oxygen species (ROS) are key signaling molecules that play an important role in the progression of inflammatory disorders. An enhanced ROS generation by polymorphonuclear neutrophils (PMNs) at the site of inflammation causes endothelial dysfunction and tissue injury. The vascular endothelium plays an important role in passage of macromolecules and inflammatory cells from the blood to tissue. Under the inflammatory conditions, oxidative stress produced by PMNs leads to the opening of inter-endothelial junctions and promotes the migration of inflammatory cells across the endothelial barrier. The migrated inflammatory cells not only help in the clearance of pathogens and foreign particles but also lead to tissue injury. The current review compiles the past and current research in the area of inflammation with particular emphasis on oxidative stress-mediated signaling mechanisms that are involved in inflammation and tissue injury.


Assuntos
Endotélio Vascular/patologia , Inflamação/patologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Endotélio Vascular/metabolismo , Humanos , Inflamação/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patologia , Estresse Oxidativo/fisiologia
5.
Exp Cell Res ; 314(3): 530-42, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18054784

RESUMO

Autotaxin (ATX) is a potent tumor cell motogen that can produce lysophosphatidic acid (LPA) from lysophosphatidylcholine. LPA is a lipid mediator that has also been shown to modulate tumor cell invasion. Autotaxin mRNA is expressed at significant levels in the intestine. Likewise, LPA2 receptor levels have been shown to be elevated in colon cancers. The molecular mechanism of ATX/LPA-induced increase in intestinal cell migration however, remains poorly understood. Villin is an intestinal and renal epithelial cell specific actin regulatory protein that modifies epithelial cell migration. In this study we demonstrate that both Caco-2 (endogenous villin) and MDCK (exogenous villin) cells, which express primarily LPA2 receptors, show enhanced cell migration in response to ATX/LPA. ATX and LPA treatment results in the rapid formation of lamellipodia and redistribution of villin to these cell surface structures, suggesting a role for villin in regulating this initial event of cell locomotion. The LPA-induced increase in cell migration required activation of c-src kinase and downstream tyrosine phosphorylation of villin by c-src kinase. LPA stimulated cell motility was determined to be insensitive to pertussis toxin, but was regulated by activation of PLC-gamma 1. Together, our results show that in epithelial cells ATX and LPA act as strong stimulators of cell migration by recruiting PLC-gamma 1 and villin, both of which participate in the initiation of protrusion.


Assuntos
Movimento Celular/fisiologia , Mucosa Intestinal/metabolismo , Lisofosfolipídeos/fisiologia , Proteínas dos Microfilamentos/metabolismo , Complexos Multienzimáticos/fisiologia , Fosfodiesterase I/fisiologia , Pseudópodes/metabolismo , Pirofosfatases/fisiologia , Actinas/metabolismo , Animais , Células CACO-2 , Carcinoma/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Cães , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Neoplasias Intestinais/metabolismo , Lisofosfolipídeos/farmacologia , Proteínas dos Microfilamentos/efeitos dos fármacos , Proteínas dos Microfilamentos/farmacologia , Complexos Multienzimáticos/farmacologia , Fosfodiesterase I/farmacologia , Fosfolipase C gama/efeitos dos fármacos , Fosfolipase C gama/metabolismo , Diester Fosfórico Hidrolases , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Pseudópodes/efeitos dos fármacos , Pseudópodes/ultraestrutura , Pirofosfatases/farmacologia , Receptores de Ácidos Lisofosfatídicos/efeitos dos fármacos , Receptores de Ácidos Lisofosfatídicos/metabolismo , Quinases da Família src/efeitos dos fármacos , Quinases da Família src/metabolismo
6.
J Biol Chem ; 283(14): 9454-64, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18198174

RESUMO

Apoptosis is a key regulator for the normal turnover of the intestinal mucosa, and abnormalities associated with this function have been linked to inflammatory bowel disease and colorectal cancer. Despite this, little is known about the mechanism(s) mediating intestinal epithelial cell apoptosis. Villin is an actin regulatory protein that is expressed in every cell of the intestinal epithelium as well as in exocrine glands associated with the gastrointestinal tract. In this study we demonstrate for the first time that villin is an epithelial cell-specific anti-apoptotic protein. Absence of villin predisposes mice to dextran sodium sulfate-induced colitis by promoting apoptosis. To better understand the cellular and molecular mechanisms of the anti-apoptotic function of villin, we overexpressed villin in the Madin-Darby canine kidney Tet-Off epithelial cell line to demonstrate that expression of villin protects cells from apoptosis by maintaining mitochondrial integrity thus inhibiting the activation of caspase-9 and caspase-3. Furthermore, we report that the anti-apoptotic response of villin depends on activation of the pro-survival proteins, phosphatidylinositol 3-kinase and phosphorylated Akt. The results of our studies shed new light on the previously unrecognized function of villin in the regulation of apoptosis in the gastrointestinal epithelium.


Assuntos
Apoptose , Células Epiteliais/metabolismo , Homeostase , Mucosa Intestinal/metabolismo , Proteínas dos Microfilamentos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Colite/patologia , Sulfato de Dextrana/toxicidade , Cães , Células Epiteliais/patologia , Células HeLa , Homeostase/efeitos dos fármacos , Homeostase/genética , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt
7.
J Biol Chem ; 283(33): 22709-22, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18482983

RESUMO

The ubiquitously expressed Src tyrosine kinases (c-Src, c-Yes, and c-Fyn) regulate intestinal cell growth and differentiation. Src activity is also elevated in the majority of malignant and premalignant tumors of the colon. The development of fibroblasts with the three ubiquitously expressed kinases deleted (SYF cells) has identified the role of Src proteins in the regulation of actin dynamics associated with increased cell migration and invasion. Despite this, unexpectedly nothing is known about the role of the individual Src kinases on intestinal cell cytoskeleton and/or cell migration. We have previously reported that villin, an epithelial cell-specific actin-modifying protein that regulates actin reorganization, cell morphology, cell migration, cell invasion, and apoptosis, is tyrosine-phosphorylated. In this report using the SYF cells reconstituted individually with c-Src, c-Yes, c-Fyn, and wild type or phosphorylation site mutants of villin, we demonstrate for the first time the absolute requirement for c-Src in villin-induced regulation of cell migration. The other major finding of our study is that contrary to previous reports, the nonreceptor tyrosine kinase, Jak3 (Janus kinase 3), does not regulate phosphorylation of villin or villin-induced cell migration and is, in fact, not expressed in intestinal epithelial cells. Further, we identify SHP-2 and PTP-PEST (protein-tyrosine phosphatase proline-, glutamate-, serine-, and threonine-rich sequence) as negative regulators of c-Src kinase and demonstrate a new function for these phosphatases in intestinal cell migration. Together, these data suggest that in colorectal carcinogenesis, elevation of c-Src or down-regulation of SHP-2 and/or PTP-PEST may promote cancer metastases and invasion by regulating villin-induced cell migration and cell invasion.


Assuntos
Movimento Celular/fisiologia , Proteínas Tirosina Quinases/metabolismo , Proteína Tirosina Quinase CSK , Células CACO-2/fisiologia , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , Células HeLa , Humanos , Janus Quinase 3/metabolismo , Invasividade Neoplásica , Fosforilação , Quinases da Família src
8.
Mol Cell Biochem ; 285(1-2): 17-27, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16622606

RESUMO

Oral administration of vanadate to diabetic animals have been shown to stabilize the glucose homeostasis and restore altered metabolic pathways. However, vanadate exerts these effects at relatively high doses with several toxic effects. Low doses of vanadate are relatively safe but unable to elicit any antidiabetic effects. The present study explored the prospect of using low doses of vanadate with Trigonella foenum graecum, seed powder (TSP), another antidiabetic agent, and to evaluate their antidiabetic effect in diabetic rats. Alloxan diabetic rats were treated with insulin, vanadate, TSP and low doses of vanadate with TSP for three weeks. The effect of these antidiabetic compounds was examined on general physiological parameters, Na(+)/K(+) ATPase activity, membrane lipid peroxidation and membrane fluidity in liver, kidney and heart tissues. Expression of glucose transporter (GLUT4) protein was also examined by immunoblotting method in experimental rat heart after three weeks of diabetes induction. Diabetic rats showed high blood glucose levels. Activity of Na(+)/K(+) ATPase decreased in diabetic liver and heart. However, kidney showed a significant increase in Na(+)/K(+) ATPase activity. Diabetic rats exhibited an increased level of lipid peroxidation and decreased membrane fluidity. GLUT4 distribution was also significantly lowered in heart of alloxan diabetic rats. Treatment of diabetic rats with insulin, TSP, vanadate and a combined therapy of lower dose of vanadate with TSP revived normoglycemia and restored the altered level of Na(+)/K(+) ATPase, lipid peroxidation and membrane fluidity and also induced the redistribution of GLUT4 transporter. TSP treatment alone is partially effective in restoring the above diabetes-induced alterations. Combined therapy of vanadate and TSP was the most effective in normalization of altered membrane linked functions and GLUT4 distribution without any harmful side effect.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Transportador de Glucose Tipo 4/metabolismo , Preparações de Plantas/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Trigonella , Vanadatos/farmacologia , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Avaliação de Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Hipoglicemiantes/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Lipídeos de Membrana/metabolismo , Miocárdio/metabolismo , Fitoterapia , Preparações de Plantas/administração & dosagem , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Wistar , Sementes/química , Vanadatos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA