Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298968

RESUMO

Aquatic pollution, which includes organic debris and heavy metals, is a severe issue for living things. Copper pollution is hazardous to people, and there is a need to develop effective methods for eliminating it from the environment. To address this issue, a novel adsorbent composed of frankincense-modified multi-walled carbon nanotubes (Fr-MMWCNTs) and Fe3O4 [Fr-MWCNT-Fe3O4] was created and subjected to characterization. Batch adsorption tests showed that Fr-MWCNT-Fe3O4 had a maximum adsorption capacity of 250 mg/g at 308 K and could efficiently remove Cu2+ ions over a pH range of 6 to 8. The adsorption process followed the pseudo-second-order and Langmuir models, and its thermodynamics were identified as endothermic. Functional groups on the surface of modified MWCNTs improved their adsorption capacity, and a rise in temperature increased the adsorption efficiency. These results highlight the Fr-MWCNT-Fe3O4 composites' potential as an efficient adsorbent for removing Cu2+ ions from untreated natural water sources.


Assuntos
Franquincenso , Nanotubos de Carbono , Poluentes Químicos da Água , Purificação da Água , Humanos , Cobre/química , Nanotubos de Carbono/química , Poluentes Químicos da Água/química , Cinética , Adsorção , Nanopartículas Magnéticas de Óxido de Ferro , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
2.
ACS Omega ; 9(10): 11459-11470, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38497024

RESUMO

In this study, novel adsorbents were developed by functionalizing multiwalled carbon nanotubes with frankincense (Fr-fMWCNT) and adding iron oxide (Fe3O4) to the adsorbent (Fr-fMWCNT-Fe3O4). The morphology, surface characteristics, and chemical nature of the synthesized samples were analyzed by using various characterization techniques. The prepared adsorbents were then applied for the elimination of the toxic dye, crystal violet (CV), from water-based solutions by employing a batch adsorption method. The effectiveness of materials for the adsorption of CV was investigated by tuning various effective experimental parameters (adsorbent dosage, dye quantity, pH, and contact time). In order to derive adsorption isotherms, the Langmuir and Freundlich adsorption models were investigated and compared. The Fr-fMWCNT and Fr-fMWCNT-Fe3O4 were found to remove 85 and 95% of the CV dye within 30 min of the adsorption experiment at pH 6, respectively. It was found that a pseudo-second-order reaction rate was consistent with the experimental adsorption kinetics. The equilibrium data demonstrated that the Langmuir model adequately explained the adsorption behavior of the CV dye on the Fr-fMWCNT and Fr-fMWCNT-Fe3O4 surfaces, respectively. According to the Langmuir study, the highest adsorption capacities of the dye are 434 mg/g for Fr-fMWCNT and 500 mg/g for Fr-fMWCNT-Fe3O4. Remediation of the CV dye using our novel composite materials has not been reported previously in the literature. The synthesized Fr-fMWCNT and Fr-fMWCNT-Fe3O4 adsorbents can be economical and green materials for the adsorptive elimination of CV dye from wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA