Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658363

RESUMO

Blood pH is tightly maintained between 7.35 and 7.45, and acidosis (pH <7.3) indicates poor prognosis in sepsis, wherein lactic acid from anoxic tissues overwhelms the buffering capacity of blood. Poor sepsis prognosis is also associated with low zinc levels and the release of High mobility group box 1 (HMGB1) from activated and/or necrotic cells. HMGB1 added to whole blood at physiological pH did not bind leukocyte receptors, but lowering pH with lactic acid to mimic sepsis conditions allowed binding, implying the presence of natural inhibitor(s) preventing binding at normal pH. Testing micromolar concentrations of divalent cations showed that zinc supported the robust binding of sialylated glycoproteins with HMGB1. Further characterizing HMGB1 as a sialic acid-binding lectin, we found that optimal binding takes place at normal blood pH and is markedly reduced when pH is adjusted with lactic acid to levels found in sepsis. Glycan array studies confirmed the binding of HMGB1 to sialylated glycan sequences typically found on plasma glycoproteins, with binding again being dependent on zinc and normal blood pH. Thus, HMGB1-mediated hyperactivation of innate immunity in sepsis requires acidosis, and micromolar zinc concentrations are protective. We suggest that the potent inflammatory effects of HMGB1 are kept in check via sequestration by plasma sialoglycoproteins at physiological pH and triggered when pH and zinc levels fall in late stages of sepsis. Current clinical trials independently studying zinc supplementation, HMGB1 inhibition, or pH normalization may be more successful if these approaches are combined and perhaps supplemented by infusions of heavily sialylated molecules.


Assuntos
Acidose/sangue , Proteína HMGB1/sangue , Sepse/sangue , Sialoglicoproteínas/sangue , Zinco/sangue , Acidose/imunologia , Acidose/metabolismo , Acidose/patologia , Proteínas de Transporte , Proteína HMGB1/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Imunidade Inata , Lipopolissacarídeos/farmacologia , Polissacarídeos/química , Sepse/imunologia , Sepse/patologia , Ácidos Siálicos/química , Sialoglicoproteínas/química , Zinco/metabolismo
2.
Semin Cancer Biol ; 86(Pt 2): 436-449, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35700938

RESUMO

Colorectal cancer (CRC) is considered the second cause of cancer death worldwide. The early diagnosis plays a key role in patient prognosis and subsequently overall survival. Similar to several types of cancer, colorectal cancer is also characterised by drug resistance and heterogeneity that contribute to its complexity -especially at advanced stages. However, despite the extensive research related to the identification of biomarkers associated to early diagnosis, accurate prognosis and the management of CRC patients, little progress has been made thus far. Therefore, the mortality rates, especially at advanced stages, remain high. A large family of chemoattractant cytokines called chemokines are known for their significant role in inflammation and immunity. Chemokines released by the different tumorous cells play a key role in increasing the complexity of the tumour's microenvironment. The current review investigates the role of chemokines and chemokine receptors in colorectal cancer and their potential as clinical molecular signatures that could be effectively used as a personalised therapeutic approach. We discussed how chemokine and chemokine receptors regulate the microenvironment and lead to heterogeneity in CRC. An important aspect of chemokines is their role in drug resistance which has been extensively discussed. This review also provides an overview of the current advances in the search for chemokines and chemokine receptors in CRC.


Assuntos
Neoplasias Colorretais , Receptores de Quimiocinas , Humanos , Detecção Precoce de Câncer , Quimiocinas , Prognóstico , Neoplasias Colorretais/genética , Microambiente Tumoral/genética
3.
Inflammopharmacology ; 31(4): 2049-2060, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37204695

RESUMO

Cyclosporine A (CsA) is an immunosuppressant primarily used at a higher dosage in transplant medicine and autoimmune diseases with a higher success rate. At lower doses, CsA exhibits immunomodulatory properties. CsA has also been reported to inhibit breast cancer cell growth by downregulating the expression of pyruvate kinase. However, differential dose-response effects of CsA in cell growth, colonization, apoptosis, and autophagy remain largely unidentified in breast cancer cells. Herein, we showed the cell growth-inhibiting effects of CsA by preventing cell colonization and enhancing DNA damage and apoptotic index at a relatively lower concentration of 2 µM in MCF-7 breast cancer cells. However, at a higher concentration of 20 µM, CsA leads to differential expression of autophagy-related genes ATG1, ATG8, and ATG9 and apoptosis-associated markers, such as Bcl-2, Bcl-XL, Bad, and Bax, indicating a dose-response effect on differential cell death mechanisms in MCF-7 cells. This was confirmed in the protein-protein interaction network of COX-2 (PTGS2), a prime target of CsA, which had close interactions with Bcl-2, p53, EGFR, and STAT3. Furthermore, we investigated the combined effect of CsA with SHP2/PI3K-AKT inhibitors showing significant MCF-7 cell growth reduction, suggesting its potential to use as an adjuvant during breast cancer therapy.


Assuntos
Neoplasias da Mama , Ciclosporina , Humanos , Feminino , Células MCF-7 , Ciclosporina/farmacologia , Ciclosporina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Autofagia
4.
Proc Natl Acad Sci U S A ; 116(15): 7465-7470, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910970

RESUMO

Circulating platelets have important functions in thrombosis and in modulating immune and inflammatory responses. However, the role of platelets in innate immunity to bacterial infection is largely unexplored. While human platelets rapidly kill Staphylococcus aureus, we found the neonatal pathogen group B Streptococcus (GBS) to be remarkably resistant to platelet killing. GBS possesses a capsule polysaccharide (CPS) with terminal α2,3-linked sialic acid (Sia) residues that mimic a common epitope present on the human cell surface glycocalyx. A GBS mutant deficient in CPS Sia was more efficiently killed by human platelets, thrombin-activated platelet releasate, and synthetic platelet-associated antimicrobial peptides. GBS Sia is known to bind inhibitory Sia-recognizing Ig superfamily lectins (Siglecs) to block neutrophil and macrophage activation. We show that human platelets also express high levels of inhibitory Siglec-9 on their surface, and that GBS can engage this receptor in a Sia-dependent manner to suppress platelet activation. In a mouse i.v. infection model, antibody-mediated platelet depletion increased susceptibility to platelet-sensitive S. aureus but did not alter susceptibility to platelet-resistant GBS. Elimination of murine inhibitory Siglec-E partially reversed platelet suppression in response to GBS infection. We conclude that GBS Sia has dual roles in counteracting platelet antimicrobial immunity: conferring intrinsic resistance to platelet-derived antimicrobial components and inhibiting platelet activation through engagement of inhibitory Siglecs. We report a bacterial virulence factor for evasion of platelet-mediated innate immunity.


Assuntos
Cápsulas Bacterianas/metabolismo , Plaquetas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ativação Plaquetária , Infecções Estreptocócicas/metabolismo , Streptococcus agalactiae , Fatores de Virulência/metabolismo , Adulto , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Diferenciação de Linfócitos B/metabolismo , Atividade Bactericida do Sangue , Plaquetas/patologia , Feminino , Glicocálix/metabolismo , Glicocálix/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Infecções Estreptocócicas/patologia , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/patogenicidade
5.
EMBO J ; 36(6): 751-760, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28100677

RESUMO

Paired immune receptors display near-identical extracellular ligand-binding regions but have intracellular sequences with opposing signaling functions. While inhibitory receptors dampen cellular activation by recognizing self-associated molecules, the functions of activating counterparts are less clear. Here, we studied the inhibitory receptor Siglec-11 that shows uniquely human expression in brain microglia and engages endogenous polysialic acid to suppress inflammation. We demonstrated that the human-specific pathogen Escherichia coli K1 uses its polysialic acid capsule as a molecular mimic to engage Siglec-11 and escape killing. In contrast, engagement of the activating counterpart Siglec-16 increases elimination of bacteria. Since mice do not have paired Siglec receptors, we generated a model by replacing the inhibitory domain of mouse Siglec-E with the activating module of Siglec-16. Siglec-E16 enhanced proinflammatory cytokine expression and bacterial killing in macrophages and boosted protection against intravenous bacterial challenge. These data elucidate uniquely human interactions of a pathogen with Siglecs and support the long-standing hypothesis that activating counterparts of paired immune receptors evolved as a response to pathogen molecular mimicry of host ligands for inhibitory receptors.


Assuntos
Inflamação/patologia , Lectinas/metabolismo , Proteínas de Membrana/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ácidos Siálicos/metabolismo , Animais , Citocinas/metabolismo , Escherichia coli/imunologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/patologia , Humanos , Evasão da Resposta Imune , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Transgênicos , Viabilidade Microbiana
6.
Phytother Res ; 35(4): 2185-2199, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33289235

RESUMO

Targeting cell cycle and inducing DNA damage by activating cell death pathways are considered as effective therapeutic strategy for combating breast cancer progression. Many of the naturally known small molecules target these signaling pathways and are effective against resistant and/or aggressive types of breast cancers. Here, we investigated the effect of catechol, a naturally occurring plant compound, for its specificity and chemotherapeutic efficacies in breast cancer (MCF-7 and MDA-MB-231) cells. Catechol treatment showed concentration-dependent cytotoxicity and antiproliferative growth in both MCF-7 and MDA-MB-231 cells while sparing minimal effects on noncancerous (F-180 and HK2) cells. Catechol modulated differential DNA damage effects by activating ATM/ATR pathways and showed enhanced γ-H2AX expression, as an indicator for DNA double-stranded breaks. MCF-7 cells showed G1 cell cycle arrest by regulating p21-mediated cyclin E/Cdk2 inhibition. Furthermore, activation of p53 triggered a caspase-mediated cell death mechanism by inhibiting regulatory proteins such as DNMT1, p-BRCA1, MCL-1, and PDCD6 with an increased Bax/Bcl-2 ratio. Overall, our results showed that catechol possesses favorable safety profile for noncancerous cells while specifically targeting multiple signaling cascades to inhibit proliferation in breast cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Catecóis/uso terapêutico , Dano ao DNA/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Catecóis/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Transdução de Sinais/efeitos dos fármacos
7.
Inflammopharmacology ; 27(5): 863-869, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31309484

RESUMO

The failure of mechanisms of natural anti-coagulation either due to genetic impairment or due to severe external injuries may result in a condition called thrombosis. This is believed to be the primary cause for a variety of life-threatening conditions such as: heart attack, stroke, pulmonary embolism, thrombophlebitis, and deep venous thrombosis (DVT). The growing number of these incidents requires an alternative anti-coagulant or anti-thrombotic agent that has minimal side effects and improved efficiency. For decades, plant polyphenols, especially flavonoids, were known for their vital role in preventing various diseases such as cancer. Mitigating excessive oxidative stress caused by reactive oxygen species (ROS) with anti-oxidant-rich flavonoids may reduce the risk of hyper-activation of platelets, cardiovascular diseases (CVD), pain, and thrombosis. Furthermore, flavonoids may mitigate endothelial dysfunction (ED), which generally correlates to the development of coronary artery and vascular diseases. Flavonoids also reduce the risk of atherosclerosis and atherothrombotic disease by inhibiting excessive tissue factor (TF) availability in the endothelium. Although the role of flavonoids in CVD is widely discussed, to the best of our knowledge, their role as anti-thrombotic lead has not been discussed. This review aims to focus on the biological uses of dietary flavonoids and their role in the treatment of various coagulation disorders, and may provide some potential lead to the drug discovery process in this area.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Inflamação/tratamento farmacológico , Trombose/tratamento farmacológico , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Doenças Cardiovasculares/metabolismo , Humanos , Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Trombose/metabolismo
8.
J Biol Chem ; 292(37): 15312-15320, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28747436

RESUMO

The immunomodulatory receptor Siglec-3/CD33 influences risk for late-onset Alzheimer's disease (LOAD), an apparently human-specific post-reproductive disease. CD33 generates two splice variants: a full-length CD33M transcript produced primarily by the "LOAD-risk" allele and a shorter CD33m isoform lacking the sialic acid-binding domain produced primarily from the "LOAD-protective" allele. An SNP that modulates CD33 splicing to favor CD33m is associated with enhanced microglial activity. Individuals expressing more protective isoform accumulate less brain ß-amyloid and have a lower LOAD risk. How the CD33m isoform increases ß-amyloid clearance remains unknown. We report that the protection by the CD33m isoform may not be conferred by what it does but, rather, from what it cannot do. Analysis of blood neutrophils and monocytes and a microglial cell line revealed that unlike CD33M, the CD33m isoform does not localize to cell surfaces; instead, it accumulates in peroxisomes. Cell stimulation and activation did not mobilize CD33m to the surface. Thus, the CD33m isoform may neither interact directly with amyloid plaques nor engage in cell-surface signaling. Rather, production and localization of CD33m in peroxisomes is a way of diminishing the amount of CD33M and enhancing ß-amyloid clearance. We confirmed intracellular localization by generating a CD33m-specific monoclonal antibody. Of note, CD33 is the only Siglec with a peroxisome-targeting sequence, and this motif emerged by convergent evolution in toothed whales, the only other mammals with a prolonged post-reproductive lifespan. The CD33 allele that protects post-reproductive individuals from LOAD may have evolved by adaptive loss-of-function, an example of the less-is-more hypothesis.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Macrófagos/metabolismo , Microglia/metabolismo , Neutrófilos/metabolismo , Polimorfismo de Nucleotídeo Único , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Alelos , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Motivos de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/patologia , Humanos , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Microglia/citologia , Microglia/imunologia , Microglia/patologia , N-Formilmetionina Leucil-Fenilalanina/toxicidade , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuraminidase/metabolismo , Neuraminidase/toxicidade , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Peroxissomos/efeitos dos fármacos , Peroxissomos/metabolismo , Peroxissomos/patologia , Filogenia , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico/efeitos dos fármacos , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/química , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética
9.
J Biol Chem ; 292(3): 1029-1037, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27920204

RESUMO

CD33-related Siglecs are a family of proteins widely expressed on innate immune cells. Binding of sialylated glycans or other ligands triggers signals that inhibit or activate inflammation. Immunomodulation by Siglecs has been extensively studied, but relationships between structure and functions are poorly explored. Here we present new data relating to the structure and function of Siglec-E, the major CD33-related Siglec expressed on mouse neutrophils, monocytes, macrophages, and dendritic cells. We generated nine new rat monoclonal antibodies specific to mouse Siglec-E, with no cross-reactivity to Siglec-F. Although all antibodies detected Siglec-E on transfected human HEK-293T cells, only two reacted with mouse bone marrow neutrophils by flow cytometry and on spleen sections by immunohistochemistry. Moreover, whereas all antibodies recognized Siglec-E-Fc on immunoblots, binding was dependent on intact disulfide bonds and N-glycans, and only two antibodies recognized native Siglec-E within spleen lysates. Thus, we further investigated the impact of Siglec-E homodimerization. Homology-based structural modeling predicted a cysteine residue (Cys-298) in position to form a disulfide bridge between two Siglec-E polypeptides. Mutagenesis of Cys-298 confirmed its role in dimerization. In keeping with the high level of 9-O-acetylation found in mice, sialoglycan array studies indicate that this modification has complex effects on recognition by Siglec-E, in relationship to the underlying structures. However, we found no differences in phosphorylation or SHP-1 recruitment between dimeric and monomeric Siglec-E expressed on HEK293A cells. Phylogenomic analyses predicted that only some human and mouse Siglecs form disulfide-linked dimers. Notably, Siglec-9, the functionally equivalent human paralog of Siglec-E, occurs as a monomer.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Regulação da Expressão Gênica/fisiologia , Multimerização Proteica/fisiologia , Substituição de Aminoácidos , Animais , Anticorpos/química , Antígenos CD/química , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos B/química , Antígenos de Diferenciação de Linfócitos B/genética , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Glicosilação , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Monócitos/citologia , Monócitos/metabolismo , Mutagênese , Mutação de Sentido Incorreto , Neutrófilos/citologia , Neutrófilos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Ratos , Ratos Endogâmicos Lew , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/química , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
10.
Proc Natl Acad Sci U S A ; 111(39): 14211-6, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25225409

RESUMO

Certain pathogenic bacteria are known to modulate the innate immune response by decorating themselves with sialic acids, which can engage the myelomonocytic lineage inhibitory receptor Siglec-9, thereby evading immunosurveillance. We hypothesized that the well-known up-regulation of sialoglycoconjugates by tumors might similarly modulate interactions with innate immune cells. Supporting this hypothesis, Siglec-9-expressing myelomonocytic cells found in human tumor samples were accompanied by a strong up-regulation of Siglec-9 ligands. Blockade of Siglec-9 enhanced neutrophil activity against tumor cells in vitro. To investigate the function of inhibitory myelomonocytic Siglecs in vivo we studied mouse Siglec-E, the murine functional equivalent of Siglec-9. Siglec-E-deficient mice showed increased in vivo killing of tumor cells, and this effect was reversed by transgenic Siglec-9 expression in myelomonocytic cells. Siglec-E-deficient mice also showed enhanced immunosurveillance of autologous tumors. However, once tumors were established, they grew faster in Siglec-E-deficient mice. In keeping with this, Siglec-E-deficient macrophages showed a propensity toward a tumor-promoting M2 polarization, indicating a secondary role of CD33-related Siglecs in limiting cancer-promoting inflammation and tumor growth. Thus, we define a previously unidentified impact of inhibitory myelomonocytic Siglecs in cancer biology, with distinct roles that reflect the dual function of myelomonocytic cells in cancer progression. In keeping with this, a human polymorphism that reduced Siglec-9 binding to carcinomas was associated with improved early survival in non-small-cell lung cancer patients, which suggests that Siglec-9 might be therapeutically targeted within the right time frame and stage of disease.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Imunidade Inata , Neoplasias/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Animais , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos B/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Ligantes , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Monócitos/imunologia , Ativação de Neutrófilo , Polimorfismo de Nucleotídeo Único , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Microambiente Tumoral/imunologia
11.
J Biol Chem ; 289(48): 33481-91, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25320078

RESUMO

Lectin galactoside-binding soluble 3 binding protein (LGALS3BP, also called Mac-2 binding protein) is a heavily glycosylated secreted molecule that has been shown previously to be up-regulated in many cancers and has been implicated in tumor metastatic processes, as well as in other cell adhesion and immune functions. The CD33-related subset of sialic acid-binding immunoglobulin-like lectins (Siglecs) consists of immunomodulatory molecules that have recently been associated with the modulation of immune responses to cancer. Because up-regulation of Siglec ligands in cancer tissue has been observed, the characterization of these cancer-associated ligands that bind to inhibitory CD33-related Siglecs could provide novel targets for cancer immunomodulatory therapy. Here we used affinity chromatography of tumor cell extracts to identify LGALS3BP as a novel sialic acid-dependent ligand for human Siglec-9 and for other immunomodulatory Siglecs, such as Siglec-5 and Siglec-10. In contrast, the mouse homolog Siglec-E binds to murine LGALS3BP with lower affinity. LGALS3BP has been observed to be up-regulated in human colorectal and prostate cancer specimens, particularly in the extracellular matrix. Finally, LGALS3BP was able to inhibit neutrophil activation in a sialic acid- and Siglec-dependent manner. These findings suggest a novel immunoinhibitory function for LGALS3BP that might be important for immune evasion of tumor cells during cancer progression.


Assuntos
Antígenos de Neoplasias/biossíntese , Biomarcadores Tumorais/biossíntese , Proteínas de Transporte/biossíntese , Neoplasias Colorretais/metabolismo , Glicoproteínas/biossíntese , Fatores Imunológicos/biossíntese , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Glicoproteínas/genética , Glicoproteínas/imunologia , Células HEK293 , Humanos , Fatores Imunológicos/genética , Fatores Imunológicos/imunologia , Masculino , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Evasão Tumoral , Regulação para Cima/imunologia
13.
Circ Res ; 111(4): 426-36, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22723300

RESUMO

RATIONALE: Lymphatic vasculature plays important roles in tissue fluid homeostasis maintenance and in the pathology of human diseases. Yet, the molecular mechanisms that control lymphatic vessel maturation remain largely unknown. OBJECTIVE: We analyzed the gene expression profiles of ex vivo isolated lymphatic endothelial cells to identify novel lymphatic vessel expressed genes and we investigated the role of semaphorin 3A (Sema3A) and neuropilin-1 (Nrp-1) in lymphatic vessel maturation and function. METHODS AND RESULTS: Lymphatic and blood vascular endothelial cells from mouse intestine were isolated using fluorescence-activated cell sorting, and transcriptional profiling was performed. We found that the axonal guidance molecules Sema3A and Sema3D were highly expressed by lymphatic vessels. Importantly, we found that the semaphorin receptor Nrp-1 is expressed on the perivascular cells of the collecting lymphatic vessels. Treatment of mice in utero (E12.5-E16.5) with an antibody that blocks Sema3A binding to Nrp-1 but not with an antibody that blocks VEGF-A binding to Nrp-1 resulted in a complex phenotype of impaired lymphatic vessel function, enhanced perivascular cell coverage, and abnormal lymphatic vessel and valve morphology. CONCLUSIONS: Together, these results reveal an unanticipated role of Sema3A-Nrp-1 signaling in the maturation of the lymphatic vascular network likely via regulating the perivascular cell coverage of the vessels thus affecting lymphatic vessel function and lymphatic valve development.


Assuntos
Linfangiogênese , Vasos Linfáticos/metabolismo , Neuropilina-1/metabolismo , Semaforina-3A/metabolismo , Transdução de Sinais , Animais , Anticorpos Neutralizantes/administração & dosagem , Linhagem da Célula , Movimento Celular , Separação Celular/métodos , Células Cultivadas , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Idade Gestacional , Humanos , Vasos Linfáticos/embriologia , Vasos Linfáticos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Neuropilina-1/genética , Neuropilina-1/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Pericitos/metabolismo , Semaforina-3A/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
ACS Omega ; 9(29): 31789-31802, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39072119

RESUMO

Glioblastoma (GB) is an aggressive brain malignancy characterized by its invasive nature. Current treatment has limited effectiveness, resulting in poor patients' prognoses. ß-Amino carbonyl (ß-AC) compounds have gained attention due to their potential anticancerous properties. In vitro assays were performed to evaluate the effects of an in-house synthesized ß-AC compound, named SHG-8, upon GB cells. Small RNA sequencing (sRNA-seq) and biocomputational analyses investigated the effects of SHG-8 upon the miRNome and its bioavailability within the human body. SHG-8 exhibited significant cytotoxicity and inhibition of cell migration and proliferation in U87MG and U251MG GB cells. GB cells treated with the compound released significant amounts of reactive oxygen species (ROS). Annexin V and acridine orange/ethidium bromide staining also demonstrated that the compound led to apoptosis. sRNA-seq revealed a shift in microRNA (miRNA) expression profiles upon SHG-8 treatment and significant upregulation of miR-3648 and downregulation of miR-7973. Real-time polymerase chain reaction (RT-qPCR) demonstrated a significant downregulation of CORO1C, an oncogene and a player in the Wnt/ß-catenin pathway. In silico analysis indicated SHG-8's potential to cross the blood-brain barrier. We concluded that SHG-8's inhibitory effects on GB cells may involve the deregulation of various miRNAs and the inhibition of CORO1C.

15.
Heliyon ; 10(2): e24286, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38268823

RESUMO

Siglecs belong to a family of immune regulatory receptors predominantly found on hematopoietic cells. They interact with Sia, resulting in the activation or inhibition of the immune response. Previous reports have suggested that the SIGLEC12 gene, which encodes the Siglec-XII protein, is expressed in the epithelial tissues and upregulated in carcinomas. However, studies deciphering the role of Siglec-XII in renal cancer (RC) are still unavailable, and here we provide insights on this question. We conducted expression analysis using the Human Protein Atlas and UALCAN databases. The impact of SIGLEC12 on RC prognosis was determined using the KM plotter, and an assessment of immune infiltration with SIGLEC12 was performed using the TIMER database. GSEA was conducted to identify the pathways affected by SIGLEC12. Finally, using GeneMania, we identified Siglec-XII interacting proteins. Our findings indicated that macrophages express SIGLEC12 in the kidney. Furthermore, we hypothesize that Siglec-XII expression might be involved in the increase of primary RC, but this effect may not be dependent on the age of the patient. In the tumour microenvironment, oncogenic pathways appeared to be upregulated by SIGLEC12. Similarly, our analysis suggested that SIGLEC12-related kidney renal papillary cell carcinomas may be more suitable for targeted immunotherapy, such as CTLA-4 and PD-1/PD-L1 inhibitors. These preliminary results suggested that high expression of SIGLEC12 is associated with poor prognosis for RC. Future studies to assess its clinical utility are necessitated.

16.
Blood ; 117(17): 4667-78, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21364190

RESUMO

In contrast to the established role of blood vessel remodeling in inflammation, the biologic function of the lymphatic vasculature in acute inflammation has remained less explored. We studied 2 established models of acute cutaneous inflammation, namely, oxazolone-induced delayed-type hypersensitivity reactions and ultraviolet B irradiation, in keratin 14-vascular endothelial growth factor (VEGF)-C and keratin 14-VEGF-D transgenic mice. These mice have an expanded network of cutaneous lymphatic vessels. Transgenic delivery of the lymphangiogenic factors VEGF-C and the VEGFR-3 specific ligand mouse VEGF-D significantly limited acute skin inflammation in both experimental models, with a strong reduction of dermal edema. Expression of VEGFR-3 by lymphatic endothelium was strongly down-regulated at the mRNA and protein level in acutely inflamed skin, and no VEGFR-3 expression was detectable on inflamed blood vessels and dermal macrophages. There was no major change of the inflammatory cell infiltrate or the composition of the inflammatory cytokine milieu in the inflamed skin of VEGF-C or VEGF-D transgenic mice. However, the increased network of lymphatic vessels in these mice significantly enhanced lymphatic drainage from the ear skin. These results provide evidence that specific lymphatic vessel activation limits acute skin inflammation via promotion of lymph flow from the skin and reduction of edema formation.


Assuntos
Dermatite/imunologia , Hipersensibilidade Tardia/imunologia , Vasos Linfáticos/imunologia , Doença Aguda , Adjuvantes Imunológicos/toxicidade , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/imunologia , Humanos , Hipersensibilidade Tardia/induzido quimicamente , Queratina-14/genética , Linfa/imunologia , Camundongos , Camundongos Transgênicos , Oxazolona/toxicidade , Fator C de Crescimento do Endotélio Vascular/genética , Fator D de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/imunologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Mol Aspects Med ; 90: 101145, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36153172

RESUMO

Siglecs (Sialic acid-binding immunoglobulin-type lectins) are I-type lectins that bind with sialic acid ligands (Sia). Most are expressed on the surface of leukocytes and are involved in immune regulation and possess immune tyrosine-based inhibitory motif (ITIM) in the intracellular domain, thus leading to inhibition of the immune response. This signaling is instrumental in maintaining quiescence under physiological conditions and acts as a brake for inflammatory cascades. By contrast, activating Siglecs carry positively charged residues in the transmembrane domain and interact with immune tyrosine-based activating motif (ITAM)-containing proteins, a DNAX-activating protein of 10-12 kDa (DAP10/12), to activate immune cells. There are various characteristics of Siglecs that do not fit within the classification of Siglec receptors as being either inhibitory or activating in nature. This review focuses on elucidating the non-canonical functions and interactions of Siglec receptors, which include Sia-independent interactions such as protein-protein interactions and interactions with lipids or other sugars. This review also summarizes Siglec expression and function on non-immune cells, and non-classical signaling of the receptor. Thus, this review will be beneficial to researchers interested in the field of Siglecs and sialic acid biology.


Assuntos
Ácido N-Acetilneuramínico , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Humanos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Transdução de Sinais , Imunidade , Tirosina
18.
Front Immunol ; 14: 1254911, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869015

RESUMO

Siglecs are well known immunotherapeutic targets in cancer. Current checkpoint inhibitors have exhibited limited efficacy, prompting a need for novel therapeutics for targets such as Siglec-15. Presently, small molecule inhibitors targeting Siglec-15 are not explored alongside characterised regulatory mechanisms involving microRNAs in CRC progression. Therefore, a small molecule inhibitor to target Siglec-15 was elucidated in vitro and microRNA mediated inhibitor effects were investigated. Our research findings demonstrated that the SHG-8 molecule exerted significant cytotoxicity on cell viability, migration, and colony formation, with an IC50 value of approximately 20µM. SHG-8 exposure induced late apoptosis in vitro in SW480 CRC cells. Notably, miR-6715b-3p was the most upregulated miRNA in high-throughput sequencing, which was also validated via RT-qPCR. MiR-6715b-3p may regulate PTTG1IP, a potential oncogene which was validated via RT-qPCR and in silico analysis. Additionally, molecular docking studies revealed SHG-8 interactions with the Siglec-15 binding pocket with the binding affinity of -5.4 kcal/mol, highlighting its role as a small molecule inhibitor. Importantly, Siglec-15 and PD-L1 are expressed on mutually exclusive cancer cell populations, suggesting the potential for combination therapies with PD-L1 antagonists.


Assuntos
Neoplasias Colorretais , MicroRNAs , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Humanos , Apoptose/genética , Antígeno B7-H1/genética , Proliferação de Células/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Simulação de Acoplamento Molecular , Oncogenes , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/antagonistas & inibidores
19.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38106019

RESUMO

Innate immune responses to cell damage-associated molecular patterns induce a controlled degree of inflammation, ideally avoiding the promotion of intense unwanted inflammatory adverse events. When released by damaged cells, Hsp70 can stimulate different responses that range from immune activation to immune suppression. The effects of Hsp70 are mediated through innate receptors expressed primarily by myeloid cells, such as dendritic cells (DCs). The regulatory innate receptors that bind to extracellular mouse Hsp70 (mHsp70) are not fully characterized, and neither are their potential interactions with activating innate receptors. Here, we describe that extracellular mHsp70 interacts with a receptor complex formed by inhibitory Siglec-E and activating LOX-1 on DCs. We also find that this interaction takes place within lipid microdomains, and Siglec-E acts as a negative regulator of LOX-1-mediated innate activation upon mHsp70 or oxidized LDL binding. Thus, HSP70 can both bind to and modulate the interaction of inhibitory and activating innate receptors on the cell surface. These findings add another dimension of regulatory mechanism to how self-molecules contribute to dampening of exacerbated inflammatory responses.

20.
Biology (Basel) ; 11(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36552226

RESUMO

The kidney is susceptible to reactive oxygen species-mediated cellular injury resulting in glomerulosclerosis, tubulointerstitial fibrosis, tubular cell apoptosis, and senescence, leading to renal failure, and is a significant cause of death worldwide. Oxidative stress-mediated inflammation is a key player in the pathophysiology of various renal injuries and diseases. Recently, flavonoids' role in alleviating kidney diseases has been reported with an inverse correlation between dietary flavonoids and kidney injuries. Flavonoids are plant polyphenols possessing several health benefits and are distributed in plants from roots to leaves, flowers, and fruits. Dietary flavonoids have potent antioxidant and free-radical scavenging properties and play essential roles in disease prevention. Flavonoids exert a nephroprotective effect by improving antioxidant status, ameliorating excessive reactive oxygen species (ROS) levels, and reducing oxidative stress, by acting as Nrf2 antioxidant response mediators. Moreover, flavonoids play essential roles in reducing chemical toxicity. Several studies have demonstrated the effects of flavonoids in reducing oxidative stress, preventing DNA damage, reducing inflammatory cytokines, and inhibiting apoptosis-mediated cell death, thereby preventing or improving kidney injuries/diseases. This review covers the recent nephroprotective effects of flavonoids against oxidative stress-mediated inflammation in the kidney and their clinical advancements in renal therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA