Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36305426

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic has highlighted the need to better understand virus-host interactions. We developed a network-based method that expands the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-host protein interaction network and identifies host targets that modulate viral infection. To disrupt the SARS-CoV-2 interactome, we systematically probed for potent compounds that selectively target the identified host proteins with high expression in cells relevant to COVID-19. We experimentally tested seven chemical inhibitors of the identified host proteins for modulation of SARS-CoV-2 infection in human cells that express ACE2 and TMPRSS2. Inhibition of the epigenetic regulators bromodomain-containing protein 4 (BRD4) and histone deacetylase 2 (HDAC2), along with ubiquitin-specific peptidase (USP10), enhanced SARS-CoV-2 infection. Such proviral effect was observed upon treatment with compounds JQ1, vorinostat, romidepsin and spautin-1, when measured by cytopathic effect and validated by viral RNA assays, suggesting that the host proteins HDAC2, BRD4 and USP10 have antiviral functions. We observed marked differences in antiviral effects across cell lines, which may have consequences for identification of selective modulators of viral infection or potential antiviral therapeutics. While network-based approaches enable systematic identification of host targets and selective compounds that may modulate the SARS-CoV-2 interactome, further developments are warranted to increase their accuracy and cell-context specificity.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Mapas de Interação de Proteínas , Proteínas Nucleares , Fatores de Transcrição , Antivirais/farmacologia , Ubiquitina Tiolesterase , Proteínas de Ciclo Celular
2.
Proc Natl Acad Sci U S A ; 117(23): 12806-12816, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32444488

RESUMO

The most prevalent human carcinogen is sunlight-associated ultraviolet (UV), a physiologic dose of which generates thousands of DNA lesions per cell, mostly of two types: cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs). It has not been possible, in living cells, to precisely characterize the respective contributions of these two lesion types to the signals that regulate cell cycle progression, DNA replication, and cell survival. Here we coupled multiparameter flow cytometry with lesion-specific photolyases that eliminate either CPDs or 6-4PPs and determined their respective contributions to DNA damage responses. Strikingly, only 6-4PP lesions activated the ATR-Chk1 DNA damage response pathway. Mechanistically, 6-4PPs, but not CPDs, impeded DNA replication across the genome as revealed by microfluidic-assisted replication track analysis. Furthermore, single-stranded DNA accumulated preferentially at 6-4PPs during DNA replication, indicating selective and prolonged replication blockage at 6-4PPs. These findings suggest that 6-4PPs, although eightfold fewer in number than CPDs, are the trigger for UV-induced DNA damage responses.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Replicação do DNA , Dímeros de Pirimidina/genética , Raios Ultravioleta , Animais , Células Cultivadas , Quinase 1 do Ponto de Checagem/metabolismo , Reparo do DNA , Células HCT116 , Humanos
3.
Proc Natl Acad Sci U S A ; 117(45): 28287-28296, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33093209

RESUMO

Head and neck squamous cell carcinoma (HNSCC) associated with high-risk human papilloma virus (HPV) infection is a growing clinical problem. The WEE1 kinase inhibitor AZD1775 (WEE1i) overrides cell cycle checkpoints and is being studied in HNSCC regimens. We show that the HPV16 E6/E7 oncoproteins sensitize HNSCC cells to single-agent WEE1i treatment through activation of a FOXM1-CDK1 circuit that drives mitotic gene expression and DNA damage. An isogenic cell system indicated that E6 largely accounts for these phenotypes in ways that extend beyond p53 inactivation. A targeted genomic analysis implicated FOXM1 signaling downstream of E6/E7 expression and analyses of primary tumors and The Cancer Genome Atlas (TCGA) data revealed an activated FOXM1-directed promitotic transcriptional signature in HPV+ versus HPV- HNSCCs. Finally, we demonstrate the causality of FOXM1 in driving WEE1i sensitivity. These data suggest that elevated basal FOXM1 activity predisposes HPV+ HNSCC to WEE1i-induced toxicity and provide mechanistic insights into WEE1i and HPV+ HNSCC therapies.


Assuntos
Proteínas de Ciclo Celular/efeitos dos fármacos , Proteína Forkhead Box M1/metabolismo , Infecções por Papillomavirus/tratamento farmacológico , Proteínas Tirosina Quinases/efeitos dos fármacos , Pirazóis/antagonistas & inibidores , Pirimidinonas/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Proteína Quinase CDC2/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço , Humanos , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Regulação para Cima
4.
J Biol Chem ; 291(47): 24487-24503, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27672210

RESUMO

The WRN helicase/exonuclease is mutated in Werner syndrome of genomic instability and premature aging. WRN-depleted fibroblasts, although remaining largely viable, have a reduced capacity to maintain replication forks active during a transient hydroxyurea-induced arrest. A strand exchange protein, RAD51, is also required for replication fork maintenance, and here we show that recruitment of RAD51 to stalled forks is reduced in the absence of WRN. We performed a siRNA screen for genes that are required for viability of WRN-depleted cells after hydroxyurea treatment, and identified HDAC1, a member of the class I histone deacetylase family. One of the functions of HDAC1, which it performs together with a close homolog HDAC2, is deacetylation of new histone H4 deposited at replication forks. We show that HDAC1 depletion exacerbates defects in fork reactivation and progression after hydroxyurea treatment observed in WRN- or RAD51-deficient cells. The additive WRN, HDAC1 loss-of-function phenotype is also observed with a catalytic mutant of HDAC1; however, it does not correlate with changes in histone H4 deacetylation at replication forks. On the other hand, inhibition of histone deacetylation by an inhibitor specific to HDACs 1-3, CI-994, correlates with increased processing of newly synthesized DNA strands in hydroxyurea-stalled forks. WRN co-precipitates with HDAC1 and HDAC2. Taken together, our findings indicate that WRN interacts with HDACs 1 and 2 to facilitate activity of stalled replication forks under conditions of replication stress.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Histona Desacetilase 1/metabolismo , Hidroxiureia/farmacologia , Helicase da Síndrome de Werner/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Transformada , Replicação do DNA/genética , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Helicase da Síndrome de Werner/genética
5.
Nucleic Acids Res ; 39(6): 2103-15, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21062817

RESUMO

Many mutation events in microsatellite DNA sequences were traced to the first embryonic divisions. It was not known what makes the first replication cycles of embryonic DNA different from subsequent replication cycles. Here we demonstrate that an unusual replication mode is involved in the first cycle of replication of DNA introduced in mammalian cells. This alternative replication starts at random positions, and occurs before the chromatin is fully assembled. It is detected in various cell lines and primary cells. The presence of single-stranded regions increases the efficiency of this alternative replication mode. The alternative replication cannot progress through the A/T-rich FRA16B fragile site, while the regular replication mode is not affected by it. A/T-rich microsatellites are associated with the majority of chromosomal breakpoints in cancer. We suggest that the alternative replication mode may be initiated at the regions with immature chromatin structure in embryonic and cancer cells resulting in increased genomic instability. This work demonstrates, for the first time, differences in the replication progression during the first and subsequent replication cycles in mammalian cells.


Assuntos
Replicação do DNA , Sequência Rica em At , Animais , Antígenos Transformantes de Poliomavirus/metabolismo , Células COS , Chlorocebus aethiops , Sítios Frágeis do Cromossomo , DNA/química , Dano ao DNA , Metilação de DNA , Células HEK293 , Células HeLa , Humanos , Repetições de Microssatélites , Nucleossomos/química , Recombinação Genética , Origem de Replicação , Fase S/genética , Vírus 40 dos Símios/genética , Transfecção
6.
iScience ; 25(12): 105464, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36404917

RESUMO

D/E repeats are stretches of aspartic and/or glutamic acid residues found in over 150 human proteins. We examined genomic stability of D/E repeats and functional characteristics of D/E repeat-containing proteins vis-à-vis the proteins with poly-Q or poly-A repeats, which are known to undergo pathologic expansions. Mining of tumor sequencing data revealed that D/E repeat-coding regions are similar to those coding poly-Qs and poly-As in increased incidence of trinucleotide insertions/deletions but differ in types and incidence of substitutions. D/E repeat-containing proteins preferentially function in chromatin metabolism and are the more likely to be nuclear and interact with core histones, the longer their repeats are. One of the longest D/E repeats of unknown function is in ATAD2, a bromodomain family ATPase frequently overexpressed in tumors. We demonstrate that D/E repeat deletion in ATAD2 suppresses its binding to nascent and mature chromatin and to the constitutive pericentromeric heterochromatin, where ATAD2 represses satellite transcription.

7.
Front Mol Biosci ; 9: 1048726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36710880

RESUMO

Background: The cGAS/STING pathway, part of the innate immune response to foreign DNA, can be activated by cell's own DNA arising from the processing of the genome, including the degradation of nascent DNA at arrested replication forks, which can be upregulated in cancer cells. Recent evidence raises a possibility that the cGAS/STING pathway may also modulate the very processes that trigger it, e.g., DNA damage repair or processing of stalled forks. Methods: We manipulated STING levels in human cells by depleting or re-expressing it, and assessed the effects of STING on replication using microfluidics-assisted replication track analysis, or maRTA, a DNA fiber assay, as well as immuno-precipitation of nascent DNA, or iPOND. We also assessed STING subcellular distribution and its ability to activate. Results: Depletion of STING suppressed and its re-expression in STING-deficient cancer cells upregulated the degradation of nascent DNA at arrested replication forks. Replication fork arrest was accompanied by the STING pathway activation, and a STING mutant that does not activate the pathway failed to upregulate nascent DNA degradation. cGAS was required for STING's effect on degradation, but this requirement could be bypassed by treating cells with a STING agonist. Cells expressing inactive STING had a reduced level of RPA on parental and nascent DNA of arrested forks and a reduced CHK1 activation compared to cells with the wild type STING. STING also affected unperturbed fork progression in a subset of cell lines. STING fractionated to the nuclear fractions enriched for structural components of chromatin and nuclear envelope, and furthermore, it associated with the chromatin of arrested replication forks as well as post-replicative chromatin. Conclusion: Our data highlight STING as a determinant of stalled replication fork integrity, thus revealing a novel connection between the replication stress and innate immune responses.

8.
J Biol Chem ; 285(42): 32264-72, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20628184

RESUMO

DNA polymerase δ (pol δ) is one of the two main replicative polymerases in eukaryotes; it synthesizes the lagging DNA strand and also functions in DNA repair. In previous work, we demonstrated that heterozygous expression of the pol δ L604G variant in mice results in normal life span and no apparent phenotype, whereas a different substitution at the same position, L604K, is associated with shortened life span and accelerated carcinogenesis. Here, we report in vitro analysis of the homologous mutations at position Leu-606 in human pol δ. Four-subunit human pol δ variants that harbor or lack 3' → 5'-exonucleolytic proofreading activity were purified from Escherichia coli. The pol δ L606G and L606K holoenzymes retain catalytic activity and processivity similar to that of wild type pol δ. pol δ L606G is highly error prone, incorporating single noncomplementary nucleotides at a high frequency during DNA synthesis, whereas pol δ L606K is extremely accurate, with a higher fidelity of single nucleotide incorporation by the active site than that of wild type pol δ. However, pol δ L606K is impaired in the bypass of DNA adducts, and the homologous variant in mouse embryonic fibroblasts results in a decreased rate of replication fork progression in vivo. These results indicate that different substitutions at a single active site residue in a eukaryotic polymerase can either increase or decrease the accuracy of synthesis relative to wild type and suggest that enhanced fidelity of base selection by a polymerase active site can result in impaired lesion bypass and delayed replication fork progression.


Assuntos
Domínio Catalítico/genética , DNA Polimerase III , Replicação do DNA , Mutação , Isoformas de Proteínas , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Polimerase III/química , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Antígeno Nuclear de Célula em Proliferação/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
9.
PLoS One ; 16(5): e0251188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33961649

RESUMO

DNA polymerases play essential functions in replication fork progression and genome maintenance. DNA lesions and drug-induced replication stress result in up-regulation and re-localization of specialized DNA polymerases η and κ. Although oncogene activation significantly alters DNA replication dynamics, causing replication stress and genome instability, little is known about DNA polymerase expression and regulation in response to oncogene activation. Here, we investigated the consequences of mutant H-RAS G12V overexpression on the regulation of DNA polymerases in h-TERT immortalized and SV40-transformed human cells. Focusing on DNA polymerases associated with the replication fork, we demonstrate that DNA polymerases are depleted in a temporal manner in response to H-RAS G12V overexpression. The polymerases targeted for depletion, as cells display markers of senescence, include the Pol α catalytic subunit (POLA1), Pol δ catalytic and p68 subunits (POLD1 and POLD3), Pol η, and Pol κ. Both transcriptional and post-transcriptional mechanisms mediate this response. Pol η (POLH) depletion is sufficient to induce a senescence-like growth arrest in human foreskin fibroblast BJ5a cells, and is associated with decreased Pol α expression. Using an SV-40 transformed cell model, we observed cell cycle checkpoint signaling differences in cells with H-RasG12V-induced polymerase depletion, as compared to Pol η-deficient cells. Our findings contribute to our understanding of cellular events following oncogene activation and cellular transformation.


Assuntos
Reparo do DNA/genética , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Genes ras/genética , Linhagem Celular , Dano ao DNA/genética , Fibroblastos/metabolismo , Humanos
10.
Mol Cell Biol ; 40(9)2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32015101

RESUMO

Newly synthesized histone H4 that is incorporated into chromatin during DNA replication is acetylated on lysines 5 and 12. Histone deacetylase 1 (HDAC1) and HDAC2 are responsible for reducing H4 acetylation as chromatin matures. Using CRISPR-Cas9-generated hdac1- or hdac2-null fibroblasts, we determined that HDAC1 and HDAC2 do not fully compensate for each other in removing de novo acetyls on H4 in vivo Proteomics of nascent chromatin and proximity ligation assays with newly replicated DNA revealed the binding of ATAD2, a bromodomain-containing posttranslational modification (PTM) reader that recognizes acetylated H4. ATAD2 is a transcription facilitator overexpressed in several cancers and in the simian virus 40 (SV40)-transformed human fibroblast model cell line used in this study. The recruitment of ATAD2 to nascent chromatin was increased in hdac2 cells over the wild type, and ATAD2 depletion reduced the levels of nascent chromatin-associated, acetylated H4 in wild-type and hdac2 cells. We propose that overexpressed ATAD2 shifts the balance of H4 acetylation by protecting this mark from removal and that HDAC2 but not HDAC1 can effectively compete with ATAD2 for the target acetyls. ATAD2 depletion also reduced global RNA synthesis and nascent DNA-associated RNA. A moderate dependence on ATAD2 for replication fork progression was noted only for hdac2 cells overexpressing the protein.


Assuntos
Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Histonas/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Acetilação , Linhagem Celular , Cromatina/metabolismo , DNA/metabolismo , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Humanos , Lisina/metabolismo , Processamento de Proteína Pós-Traducional
11.
DNA Repair (Amst) ; 7(11): 1776-86, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18722555

RESUMO

Congenital deficiency in the WRN protein, a member of the human RecQ helicase family, gives rise to Werner syndrome, a genetic instability and cancer predisposition disorder with features of premature aging. Cellular roles of WRN are not fully elucidated. WRN has been implicated in telomere maintenance, homologous recombination, DNA repair, and other processes. Here I review the available data that directly address the role of WRN in preserving DNA integrity during replication and propose that WRN can function in coordinating replication fork progression with replication stress-induced fork remodeling. I further discuss this role of WRN within the contexts of damage tolerance group of regulatory pathways, and redundancy and cooperation with other RecQ helicases.


Assuntos
Replicação do DNA , Exodesoxirribonucleases/fisiologia , RecQ Helicases/fisiologia , Envelhecimento , Animais , Ciclo Celular , Reparo do DNA , Exodesoxirribonucleases/química , Humanos , Camundongos , Modelos Biológicos , Modelos Genéticos , RecQ Helicases/química , Fase S , Telômero/ultraestrutura , Síndrome de Werner/genética , Helicase da Síndrome de Werner
12.
Mol Cell Biol ; 23(10): 3405-16, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12724400

RESUMO

Rad53 of Saccharomyces cerevisiae is a checkpoint kinase whose structure and function are conserved among eukaryotes. When a cell detects damaged DNA, Rad53 activity is dramatically increased, which ultimately leads to changes in DNA replication, repair, and cell division. Despite its central role in checkpoint signaling, little is known about Rad53 substrates or substrate specificity. A number of proteins are implicated as Rad53 substrates; however, the evidence remains indirect. Previously, we have provided evidence that Swi6, a subunit of the Swi4/Swi6 late-G(1)-specific transcriptional activator, is a substrate of Rad53 in the G(1)/S DNA damage checkpoint. In the present study we identify Rad53 phosphorylation sites in Swi6 in vitro and demonstrate that at least one of them is targeted by Rad53 in vivo. Mutations in these phosphorylation sites in Swi6 shorten but do not eliminate the Rad53-dependent delay of the G(1)-to-S transition after DNA damage. We derive a consensus for Rad53 site preference at positions -2 and +2 (-2/+2) and identify its potential substrates in the yeast proteome. Finally, we present evidence that one of these candidates, the cohesin complex subunit Scc1 undergoes DNA damage-dependent phosphorylation, which is in part dependent on Rad53.


Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Divisão Celular , Quinase do Ponto de Checagem 2 , Dano ao DNA , Fase G1 , Glutationa Transferase/metabolismo , Dados de Sequência Molecular , Mutação , Fases de Leitura Aberta , Mapeamento de Peptídeos , Fosfopeptídeos/química , Fosforilação , Plasmídeos/metabolismo , Testes de Precipitina , Proteoma , Proteínas Recombinantes de Fusão/metabolismo , Fase S , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Ativação Transcricional
13.
Ageing Res Rev ; 33: 105-114, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26993153

RESUMO

Werner syndrome (WS) is a prototypical segmental progeroid syndrome characterized by multiple features consistent with accelerated aging. It is caused by null mutations of the WRN gene, which encodes a member of the RECQ family of DNA helicases. A unique feature of the WRN helicase is the presence of an exonuclease domain in its N-terminal region. Biochemical and cell biological studies during the past decade have demonstrated involvements of the WRN protein in multiple DNA transactions, including DNA repair, recombination, replication and transcription. A role of the WRN protein in telomere maintenance could explain many of the WS phenotypes. Recent discoveries of new progeroid loci found in atypical Werner cases continue to support the concept of genomic instability as a major mechanism of biological aging. Based on these biological insights, efforts are underway to develop therapeutic interventions for WS and related progeroid syndromes.


Assuntos
Senilidade Prematura , Helicase da Síndrome de Werner/genética , Síndrome de Werner , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Reparo do DNA , Replicação do DNA , Exodesoxirribonucleases , Humanos , Mutação , Síndrome de Werner/diagnóstico , Síndrome de Werner/genética , Síndrome de Werner/metabolismo , Síndrome de Werner/fisiopatologia
14.
Sci Rep ; 7: 44081, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28276523

RESUMO

Loss-of-function mutations in the WRN helicase gene cause Werner syndrome- a progeroid syndrome with an elevated risk of cancer and other age-associated diseases. Large numbers of single nucleotide polymorphisms have been identified in WRN. We report here the organismal, cellular, and molecular phenotypes of variant rs3087425 (c. 2500C > T) that results in an arginine to cysteine substitution at residue 834 (R834C) and up to 90% reduction of WRN helicase activity. This variant is present at a high (5%) frequency in Mexico, where we identified 153 heterozygous and three homozygous individuals among 3,130 genotyped subjects. Family studies of probands identified ten additional TT homozygotes. Biochemical analysis of WRN protein purified from TT lymphoblast cell lines confirmed that the R834C substitution strongly and selectively reduces WRN helicase, but not exonuclease activity. Replication track analyses showed reduced replication fork progression in some homozygous cells following DNA replication stress. Among the thirteen TT homozygotes, we identified a previously unreported and statistically significant gender bias in favor of males (p = 0.0016), but none of the clinical findings associated with Werner syndrome. Our results indicate that WRN helicase activity alone is not rate-limiting for the development of clinical WS.


Assuntos
Homozigoto , Mutação de Sentido Incorreto , Fenótipo , Helicase da Síndrome de Werner/metabolismo , Síndrome de Werner/genética , Adolescente , Adulto , Idoso , Substituição de Aminoácidos , Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome de Werner/enzimologia , Síndrome de Werner/patologia , Helicase da Síndrome de Werner/genética
15.
Genetics ; 160(1): 123-36, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11805050

RESUMO

Precocious entry into S phase due to overproduction of G1 regulators can cause genomic instability. The mechanisms of this phenomenon are largely unknown. We explored the consequences of precocious S phase in yeast by overproducing a deregulated form of Swi4 (Swi4-t). Swi4 is a late G1-specific transcriptional activator that, in complex with Swi6, binds to SCB elements and activates late G1-specific genes, including G1 cyclins. We find that wild-type cells tolerate Swi4-t, whereas checkpoint-deficient rad53-11 cells lose viability within several divisions when Swi4-t is overproduced. Rad53 kinase activity is increased in cells overproducing Swi4-t, indicating activation of the checkpoint. We monitored the transition from G1 to S in cells with Swi4-t and found that there is precocious S-phase entry and that the length of S phase is extended. Moreover, there were more replication intermediates, and firing of at least a subset of origins may have been more extensive in the cells expressing Swi4-t. Our working hypothesis is that Rad53 modulates origin firing based upon growth conditions to optimize the rate of S-phase progression without adversely affecting fidelity. This regulation becomes essential when S phase is influenced by Swi4-t.


Assuntos
Replicação do DNA , DNA Fúngico/biossíntese , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/citologia , Fatores de Transcrição/fisiologia , Proteínas de Ciclo Celular , Quinase do Ponto de Checagem 2 , Ciclinas/fisiologia , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA , Proteínas Fúngicas , Fase G1/fisiologia , Genes cdc/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
16.
Mutat Res ; 532(1-2): 5-19, 2003 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-14643425

RESUMO

Both in yeast and in higher eukaryotes, genomic instability often ensues when the G1/S transition machinery is deregulated and cells are forced to enter S phase prematurely. This case of acquired mutability is particularly important, since a majority of genes mutated in human cancers encode factors that influence the G1/S transition. The precocious G1/S transition often results in a sub-optimal S phase. Moreover, the problems generated in such an S phase can escape detection by the cellular surveillance systems, allowing undeterred mitosis. This review focuses primarily on budding yeast data, where progress has been made in the past couple of years towards a mechanistic understanding of the underlying processes. A dual surveillance system is discussed, which relies on the presence of licensed but unfired origins and stalled replication forks to deter mitosis until replication is complete. Normally, this dual surveillance system allows S phase to be flexible in duration in a variety of growth conditions, when the fork density and/or fork progression rates can vary widely. However, precocious exit from G1 can have a disabling effect on this surveillance system. Premature exit from G1 can cut short the licensing of origins and the accumulation of resources for the upcoming replication, while giving a cell a false indication that it is metabolically ready to conduct S phase.


Assuntos
Replicação do DNA , Fase G1/fisiologia , Instabilidade Genômica , Origem de Replicação , Fase S/fisiologia , Animais , Proteínas de Ciclo Celular , Dano ao DNA , Reparo do DNA , Genoma , Humanos
17.
Oncoscience ; 1(7): 540-555, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25580447

RESUMO

DNA crosslinks can block replication in vitro and slow down S phase progression in vivo. We characterized the effect of mitomycin C crosslinker on S phase globally and on individual replication forks in wild type and FANCD2-deficient human cells. FANCD2 is critical to crosslink repair, and is also implicated in facilitating DNA replication. We used DNA fiber analysis to demonstrate persistent reduction in abundance but not progression rate of replication forks during an S phase of MMC-treated cells. FANCD2 deficiency did not eliminate this phenotype. Immunoprecipitation of EdU-labeled DNA indicated that replication was not suppressed in the domains that were undergoing response to MMC as marked by the presence of γH2AX, and in fact γH2AX was overrepresented on DNA that had replicated immediately after MMC in wild type through less so in FANCD2-depleted cells. FANCD2-depleted cells also produced fewer tracks of uninterrupted replication of up to 240Kb long, regardless of MMC treatment. Overall, the data suggest that crosslinks may not pose a block to S phase as a whole, but instead profoundly change its progress by reducing density of replication forks and causing at least a fraction of forks to operate within a DNA damage response-altered chromatin.

18.
DNA Repair (Amst) ; 12(2): 128-39, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23253856

RESUMO

Human WRN and BLM genes are members of the conserved RECQ helicase family. Mutations in these genes are associated with Werner and Bloom syndromes. WRN and BLM proteins are implicated in DNA replication, recombination, repair, telomere maintenance, and transcription. Using microfluidics-assisted display of DNA for replication track analysis (ma-RTA), we show that WRN and BLM contribute additively to normal replication fork progression, and non-additively, in a RAD51-dependent pathway, to resumption of replication after arrest by hydroxyurea (HU), a replication-stalling drug. WRN but not BLM is required to support fork progression after HU. Resumption of replication by forks may be necessary but is not sufficient for timely completion of the cell cycle after HU arrest, as depletion of WRN or BLM compromises fork recovery to a similar degree, but only BLM depletion leads to extensive delay of cell division after HU, as well as more pronounced chromatin bridging. Finally, we show that recovery from HU includes apparent removal of some of the DNA that was synthesized immediately after release from HU, a novel phenomenon that we refer to as nascent strand processing, NSP.


Assuntos
Replicação do DNA/genética , Exodesoxirribonucleases/metabolismo , RecQ Helicases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Cromatina/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Humanos , Hidroxiureia/toxicidade , Microfluídica , Rad51 Recombinase/metabolismo , Helicase da Síndrome de Werner
19.
Nat Struct Mol Biol ; 20(3): 347-54, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23396353

RESUMO

Topoisomerase I (TOP1) inhibitors are an important class of anticancer drugs. The cytotoxicity of TOP1 inhibitors can be modulated by replication fork reversal through a process that requires poly(ADP-ribose) polymerase (PARP) activity. Whether regressed forks can efficiently restart and what factors are required to restart fork progression after fork reversal are still unknown. We have combined biochemical and EM approaches with single-molecule DNA fiber analysis to identify a key role for human RECQ1 helicase in replication fork restart after TOP1 inhibition that is not shared by other human RecQ proteins. We show that the poly(ADP-ribosyl)ation activity of PARP1 stabilizes forks in the regressed state by limiting their restart by RECQ1. These studies provide new mechanistic insights into the roles of RECQ1 and PARP in DNA replication and offer molecular perspectives to potentiate chemotherapeutic regimens based on TOP1 inhibition.


Assuntos
Replicação do DNA , RecQ Helicases/metabolismo , Inibidores da Topoisomerase I/farmacologia , Camptotecina/farmacologia , Linhagem Celular , DNA Topoisomerases Tipo I/metabolismo , Humanos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , RecQ Helicases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA