Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Urol ; 211(1): 141-142, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871324
2.
Front Neurosci ; 18: 1372315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560047

RESUMO

Introduction: Deep brain stimulation (DBS) has shown remarkable success treating neurological and psychiatric disorders including Parkinson's disease, essential tremor, dystonia, epilepsy, and obsessive-compulsive disorder. DBS is now being explored to improve cognitive and functional outcomes in other psychiatric conditions, such as those characterized by reduced N-methyl-D-aspartate (NMDA) function (i.e., schizophrenia). While DBS for movement disorders generally involves high-frequency (>100 Hz) stimulation, there is evidence that low-frequency stimulation may have beneficial and persisting effects when applied to cognitive brain networks. Methods: In this study, we utilize a novel technology, functional ultrasound imaging (fUSI), to characterize the cerebrovascular impact of medial septal nucleus (MSN) DBS under conditions of NMDA antagonism (pharmacologically using Dizocilpine [MK-801]) in anesthetized male mice. Results: Imaging from a sagittal plane across a variety of brain regions within and outside of the septohippocampal circuit, we find that MSN theta-frequency (7.7 Hz) DBS increases hippocampal cerebral blood volume (CBV) during and after stimulation. This effect was not present using standard high-frequency stimulation parameters [i.e., gamma (100 Hz)]. Discussion: These results indicate the MSN DBS increases circuit-specific hippocampal neurovascular activity in a frequency-dependent manner and does so in a way that continues beyond the period of electrical stimulation.

3.
Adv Healthc Mater ; 13(18): e2304122, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38563494

RESUMO

This work presents LiFT (a lithium fiber-based test), a low-cost electrochemical sensor that can measure lithium in human saliva and urine with FDA-required accuracy. Lithium is used for the treatment of bipolar disorder, and has a narrow therapeutic window. Close monitoring of lithium concentration in biofluids and adjustment of drug dosage can minimize the devastating side effects. LiFT is an inexpensive, yet accurate and simple-to-operate lithium sensor for frequent at-home testing for early identification of lithium toxicity. The low cost and high accuracy of LiFT are enabled through an innovative design and the use of ubiquitous materials such as yarn and carbon black for fabrication. LiFT measures Li+ through potentiometric recognition using a lithium selective sensing membrane that is deposited on the ink-coated yarn. A detection limit of 0.97 µM is obtained with a sensitivity of 59.07±1.25 mV/decade for the Li+ sensor in deionized water. Moreover, the sodium correction extended LiFT's linear range in urine and saliva to 0.5 mM. The LiFT platform sends the test results to the patient's smartphone, which subsequently can be shared with the patient's healthcare provider to expedite diagnosis and prevention of acute lithium toxicity.


Assuntos
Transtorno Bipolar , Lítio , Saliva , Humanos , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/urina , Lítio/química , Saliva/química , Saliva/metabolismo , Técnicas Eletroquímicas/métodos
4.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496466

RESUMO

The complex and heterogeneous genetic architecture of schizophrenia inspires us to look beyond individual risk genes for therapeutic strategies and target their interactive dynamics and convergence. Postsynaptic NMDA receptor (NMDAR) complexes are a site of such convergence. Src kinase is a molecular hub of NMDAR function, and its protein interaction subnetwork is enriched for risk-genes and altered protein associations in schizophrenia. Previously, Src activity was found to be decreased in post-mortem studies of schizophrenia, contributing to NMDAR hypofunction. PSD-95 suppresses Src via interacting with its SH2 domain. Here, we devised a strategy to suppress the inhibition of Src by PSD-95 via employing a cell penetrating and Src activating PSD-95 inhibitory peptide (TAT-SAPIP). TAT-SAPIP selectively increased post-synaptic Src activity in humans and mice, and enhanced synaptic NMDAR currents in mice. Chronic ICV injection of TAT-SAPIP rescued deficits in trace fear conditioning in Src hypomorphic mice. We propose blockade of the Src-PSD-95 interaction as a proof of concept for the use of interfering peptides as a therapeutic strategy to reverse NMDAR hypofunction in schizophrenia and other illnesses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA