RESUMO
Autoimmune hepatitis (AIH) is defined as a chronic liver inflammation with loss of tolerance against hepatocytes. The etiology and pathophysiology of AIH are still poorly understood because reliable animal models are limited. Therefore, we recently introduced a model of experimental murine AIH by a self-limited adenoviral infection with the AIH type 2 antigen formiminotransferase cyclodeaminase (FTCD). We could demonstrate that break of humoral tolerance towards liver specific autoantigens like FTCD and cytochrome P450 2D6 (CYP2D6) is not dependent on the genetic background. However, the development of AIH in autoantibody positive animals is determined by genetic background genes. We could also show that the break of humoral tolerance is necessary but not sufficient for the development of AIH. In contrast the break of tolerance against the ubiquitously expressed nuclear antigens (ANAs) is strictly dependent on genetic predisposition. Priming with the UGA suppressor tRNA-associated protein (soluble liver antigen; SLA) is a strong inducer of ANA reactivity, but not sufficient to cause AIH development thereby questioning the importance of anti-SLA immune response as an important driver in AIH. Monogenetic mutations such as Aire-deficiency can cause AIH in otherwise genetically resistant strains. CONCLUSION: The results have important implications for our understanding of the pathophysiology of AIH development and for the interpretation of humoral antibody responses in AIH.
Assuntos
Autoantígenos/imunologia , Autoimunidade/genética , Predisposição Genética para Doença , Hepatite Autoimune/etiologia , Animais , Citocromo P-450 CYP2D6/genética , Modelos Animais de Doenças , Meio Ambiente , Hepatite Autoimune/metabolismo , Hepatite Autoimune/patologia , Humanos , Soros Imunes/imunologia , Tolerância Imunológica , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , MutaçãoRESUMO
UNLABELLED: Autoimmune polyendocrine syndrome type 1 (APS-1) is caused by mutations of the autoimmune regulator (AIRE) gene. Mouse studies have shown that this results in defective negative selection of T cells and defective early seeding of peripheral organs with regulatory T cells (Tregs). Aire deficiency in humans and mice manifests as spontaneous autoimmunity against multiple organs, and 20% of patients develop an autoimmune hepatitis (AIH). To study AIH in APS-1, we generated a murine model of human AIH on a BALB/c mouse background, in which Aire is truncated at exon 2. A subgroup of 24% of mice is affected by AIH, characterized by lymphoplasmacytic and periportal hepatic infiltrates, autoantibodies, elevated aminotransferases, and a chronic and progressive course of disease. Disease manifestation was dependent on specific Aire mutations and the genetic background of the mice. Though intrahepatic Treg numbers were increased and hyperproliferative, the intrahepatic CD4/CD8 ratio was decreased. The targets of the adaptive autoimmune response were polyspecific and not focussed on essential autoantigens, as described for other APS-1-related autoimmune diseases. The AIH could be treated with prednisolone or adoptive transfer of polyspecific Tregs. CONCLUSION: Development of AIH in APS-1 is dependent on specific Aire mutations and genetic background genes. Autoimmune response is polyspecific and can be controlled by steroids or transfer with Tregs. This might enable new treatment options for patients with AIH.