Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(3): 1124-1138, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29161413

RESUMO

Phospholipids, such as 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC), are the major components of cell membranes. Their exposure to reactive oxygen species creates oxidized phospholipids, which predispose to the development of chronic inflammatory diseases and metabolic disorders through endothelial activation and dysfunction. Although the effects of oxidized PAPC (oxPAPC) on endothelial cells have been previously studied, the underlying molecular mechanisms evoking biological responses remain largely unknown. Here, we investigated the molecular mechanisms of oxPAPC function with a special emphasis on NRF2-regulated microRNAs (miRNAs) in human umbilical vein endothelial cells (HUVECs) utilizing miRNA profiling, global run-on sequencing (GRO-seq), genome-wide NRF2 binding model, and RNA sequencing (RNA-seq) with miRNA overexpression and silencing. We report that the central regulators of endothelial activity, KLF2 for quiescence, PFKFB3 for glycolysis, and VEGFA, FOXO1 and MYC for growth and proliferation, are regulated by transcription factor NRF2 and the NRF2-regulated miR-106b∼25 cluster member, miR-93, in HUVECs. Mechanistically, oxPAPC was found to induce glycolysis and proliferation NRF2-dependently, and oxPAPC-dependent induction of the miR-106b∼25 cluster was mediated by NRF2. Additionally, several regulatory loops were established between NRF2, miR-93 and the essential regulators of healthy endothelium, collectively implying that NRF2 controls the switch between the quiescent and the proliferative endothelial states together with miR-93.


Assuntos
Glicólise/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Fosfatidilcolinas/farmacologia , Fosfofrutoquinase-2/genética , Antagomirs/genética , Antagomirs/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicólise/genética , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfofrutoquinase-2/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Nitric Oxide ; 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29567143

RESUMO

Electrophilic nitrated-fatty acids (NO2-FA, nitroalkenes) are formed during reactions of NO-derived oxidized species (•NO, •NO2) with either free or esterified polyunsaturated fatty acids. Due to their electrophilic character, they react with nucleophiles such as cysteine thiols in signaling proteins, thereby triggering downstream signaling cascades. Herein, we review two stress-signaling pathways activated by nitroalkenes, the KEAP1-NRF2 signaling pathway and the heat shock response (HSR) pathway. In addition, their biological and pharmacological relevance are discussed. Given that perturbations in both proteostasis and redox balance are common in many disease processes, dual activation of both pathways by nitroalkenes is a promising pharmacological approach for their treatment.

3.
Arch Biochem Biophys ; 617: 94-100, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27769838

RESUMO

Reactive oxygen species (ROS) and products of their reactions with cellular macromolecules such as unsaturated fatty acids have been implicated to be important regulators of signalling processes via oxidation or alkylation of redox active thiol residues in target proteins. One of key redox-sensitive signalling proteins mediating the response to oxidant stress is Keap1 (Kelch-like erythroid cell-derived protein with CNC homology [ECH]-associated protein 1), which is a negative regulator of transcription factor Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) and the central hub for sensing endogenous and environmental oxidative and electrophilic stress. In this review, we provide an overview of the mechanisms by which Keap1 orchestrates the antioxidant response and how the system can be targeted for therapy.


Assuntos
Antioxidantes/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Motivos de Aminoácidos , Animais , Humanos , Oxidantes/química , Oxirredução , Estresse Oxidativo , Filogenia , Espécies Reativas de Oxigênio/química , Transdução de Sinais
4.
Cardiovasc Res ; 115(1): 243-254, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29917052

RESUMO

Aims: Oxidative stress and inflammation play an important role in the progression of atherosclerosis. Transcription factor NF-E2-related factor 2 (Nrf2) has antioxidant and anti-inflammatory effects in the vessel wall, but paradoxically, global loss of Nrf2 in apoE deficient mice alleviates atherosclerosis. In this study, we investigated the effect of global Nrf2 deficiency on early and advanced atherogenesis in alternative models of atherosclerosis, LDL receptor deficient mice (LDLR-/-), and LDLR-/- mice expressing apoB-100 only (LDLR-/- ApoB100/100) having a humanized lipoprotein profile. Methods and results: LDLR-/- mice were fed a high-fat diet (HFD) for 6 or 12 weeks and LDLR-/-ApoB100/100 mice a regular chow diet for 6 or 12 months. Nrf2 deficiency significantly reduced early and more advanced atherosclerosis assessed by lesion size and coverage in the aorta in both models. Nrf2 deficiency in LDLR-/- mice reduced total plasma cholesterol after 6 weeks of HFD and triglycerides in LDLR-/-ApoB100/100 mice on a chow diet. Nrf2 deficiency aggravated aortic plaque maturation in aged LDLR-/-ApoB100/100 mice as it increased plaque calcification. Moreover, ∼36% of Nrf2-/-LDLR-/-ApoB100/100 females developed spontaneous myocardial infarction (MI) or sudden death at 5 to 12 months of age. Interestingly, Nrf2 deficiency increased plaque instability index, enhanced plaque inflammation and calcification, and reduced fibrous cap thickness in brachiocephalic arteries of LDLR-/-ApoB100/100 female mice at age of 12 months. Conclusions: Absence of Nrf2 reduced atherosclerotic lesion size in both atherosclerosis models, likely via systemic effects on lipid metabolism. However, Nrf2 deficiency in aged LDLR-/-ApoB100/100 mice led to an enhanced atherosclerotic plaque instability likely via increased plaque inflammation and oxidative stress, which possibly predisposed to MI and sudden death.


Assuntos
Aorta/metabolismo , Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Hipercolesterolemia/complicações , Fator 2 Relacionado a NF-E2/deficiência , Placa Aterosclerótica , Fatores Etários , Animais , Aorta/patologia , Doenças da Aorta/etiologia , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Aterosclerose/etiologia , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Feminino , Hipercolesterolemia/genética , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Receptores de LDL/deficiência , Receptores de LDL/genética , Triglicerídeos/sangue
5.
Redox Biol ; 18: 77-83, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986211

RESUMO

Oxidative stress predisposes to several aging-associated diseases, such as cardiovascular diseases and cancer. In aging, increase in the production of reactive oxygen species is typically accompanied with a decline in adaptive stress responses to oxidative stress. The decline is primarily due to a decrease in antioxidant production. Nuclear factor E2-Related Factor 2 (NRF2) is a key transcription factor regulating oxidative and electrophilic stress responses, but it has also been shown to play a role in the regulation of cell metabolism. NRF2 expression declines in aging, but the mechanisms remain unclear. In this study, we show that microRNAs (miRNAs) that are abundant in old endothelial cells decrease NRF2 expression by direct targeting of NRF2 mRNA. The effect is reversed by miRNA inhibition. The senescence-associated downregulation of NRF2 decreases endothelial glycolytic activity and stress tolerance both of which are restored after reinstating NRF2. Manipulation of the senescence-associated miRNA levels affects the glycolytic activity and stress tolerance consistently with the NRF2 results. We conclude that senescence-associated miRNAs are involved in the decline of NRF2 expression, thus contributing to the repression of adaptive responses during cell senescence.


Assuntos
Senescência Celular , Células Endoteliais/citologia , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Proliferação de Células , Regulação para Baixo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Glicólise , Células Endoteliais da Veia Umbilical Humana , Humanos , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
6.
Sci Rep ; 7(1): 10943, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887500

RESUMO

Endothelial plasticity enables the cells to switch their phenotype according to the surrounding vascular microenvironment. MicroRNAs (miRNAs) are small noncoding RNAs that control endothelial plasticity. The objective of this study was to investigate the differences in miRNA profiles of tissue-derived cells and cultured endothelial cells. To this end, miRNA expression was profiled from freshly isolated tissue-derived human vascular endothelial cells and endothelial cells cultured until cellular senescence using miRNA sequencing. In addition, the data was searched for putative novel endothelial miRNAs and miRNA isoforms. The data analysis revealed a striking change in endothelial miRNA profile as the cells adapted from tissue to cell culture environment and the overall miRNA expression decreased significantly in cultured compared to tissue-derived endothelial cells. In addition to changes in mechanosensitive miRNA expression, alterations in senescence-associated and endothelial-to-mesenchymal-transition-associated miRNAs were observed in aging cells. Collectively, the data illustrates the adaptability of endothelial cell miRNA expression that mirrors prevailing cellular environment.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , MicroRNAs/genética , Senescência Celular , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Mecanotransdução Celular , MicroRNAs/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA