Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 68(5): 1991-2003, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29729197

RESUMO

The serine protease plasmin degrades extracellular matrix (ECM) components both directly and indirectly through activation of matrix metalloproteinases. Excessive plasmin activity and subsequent ECM degradation cause hepatic sinusoidal fragility and hemorrhage in developing embryos. We report here that excessive plasmin activity in a murine acetaminophen (APAP) overdose model likewise compromises hepatic sinusoidal vascular integrity in adult animals. We found that hepatic plasmin activity is up-regulated significantly at 6 hours after APAP overdose. This plasmin up-regulation precedes both degradation of the ECM component fibronectin around liver vasculature and bleeding from centrilobular sinusoids. Importantly, administration of the pharmacological plasmin inhibitor tranexamic acid or genetic reduction of plasminogen, the circulating zymogen of plasmin, ameliorates APAP-induced hepatic fibronectin degradation and sinusoidal bleeding. Conclusion: These studies demonstrate that reduction of plasmin stabilizes hepatic sinusoidal vascular integrity after APAP overdose. (Hepatology 2018; 00:1-13).


Assuntos
Acetaminofen/intoxicação , Analgésicos não Narcóticos/intoxicação , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Overdose de Drogas/patologia , Fibrinolisina/metabolismo , Fígado/efeitos dos fármacos , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Overdose de Drogas/metabolismo , Fibronectinas/metabolismo , Imunofluorescência , Immunoblotting , Fígado/irrigação sanguínea , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
2.
Nature ; 502(7469): 105-9, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23995678

RESUMO

Circulating lymphocytes continuously enter lymph nodes for immune surveillance through specialized blood vessels named high endothelial venules, a process that increases markedly during immune responses. How high endothelial venules (HEVs) permit lymphocyte transmigration while maintaining vascular integrity is unknown. Here we report a role for the transmembrane O-glycoprotein podoplanin (PDPN, also known as gp38 and T1α) in maintaining HEV barrier function. Mice with postnatal deletion of Pdpn lost HEV integrity and exhibited spontaneous bleeding in mucosal lymph nodes, and bleeding in the draining peripheral lymph nodes after immunization. Blocking lymphocyte homing rescued bleeding, indicating that PDPN is required to protect the barrier function of HEVs during lymphocyte trafficking. Further analyses demonstrated that PDPN expressed on fibroblastic reticular cells, which surround HEVs, functions as an activating ligand for platelet C-type lectin-like receptor 2 (CLEC-2, also known as CLEC1B). Mice lacking fibroblastic reticular cell PDPN or platelet CLEC-2 exhibited significantly reduced levels of VE-cadherin (also known as CDH5), which is essential for overall vascular integrity, on HEVs. Infusion of wild-type platelets restored HEV integrity in Clec-2-deficient mice. Activation of CLEC-2 induced release of sphingosine-1-phosphate from platelets, which promoted expression of VE-cadherin on HEVs ex vivo. Furthermore, draining peripheral lymph nodes of immunized mice lacking sphingosine-1-phosphate had impaired HEV integrity similar to Pdpn- and Clec-2-deficient mice. These data demonstrate that local sphingosine-1-phosphate release after PDPN-CLEC-2-mediated platelet activation is critical for HEV integrity during immune responses.


Assuntos
Endotélio Linfático/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Endotélio Linfático/imunologia , Feminino , Regulação da Expressão Gênica , Junções Intercelulares/genética , Junções Intercelulares/imunologia , Linfonodos/metabolismo , Linfonodos/patologia , Lisofosfolipídeos/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Esfingosina/análogos & derivados , Esfingosina/metabolismo
3.
J Biol Chem ; 292(40): 16491-16497, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28842487

RESUMO

The kidney's filtration activity is essential for removing toxins and waste products from the body. The vascular endothelial cells of the glomerulus are fenestrated, flattened, and surrounded by podocytes, specialized cells that support glomerular endothelial cells. Mucin-type core 1-derived O-glycans (O-glycans) are highly expressed on both glomerular capillary endothelial cells and their supporting podocytes, but their biological role is unclear. Biosynthesis of core 1-derived O-glycans is catalyzed by the glycosyltransferase core 1 ß1,3-galactosyltransferase (C1galt1). Here we report that neonatal or adult mice with inducible deletion of C1galt1 (iC1galt1-/-) exhibit spontaneous proteinuria and rapidly progressing glomerulosclerosis. Ultrastructural analysis of the glomerular filtration barrier components revealed that loss of O-glycans results in altered podocyte foot processes. Further analysis indicated that O-glycan is essential for the normal signaling function of podocalyxin, a podocyte foot process-associated glycoprotein. Our results reveal a new function of O-glycosylation in the integrity of the glomerular filtration barrier.


Assuntos
Galactosiltransferases/metabolismo , Mucinas , Podócitos/metabolismo , Polissacarídeos/metabolismo , Sialoglicoproteínas/metabolismo , Transdução de Sinais/fisiologia , Animais , Galactosiltransferases/genética , Camundongos , Camundongos Knockout , Polissacarídeos/genética , Sialoglicoproteínas/genética
4.
J Neurooncol ; 138(1): 17-27, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29357089

RESUMO

Binding of epsin ubiquitin-interacting motif (UIM) with ubiquitylated VEGFR2 is a critical mechanism for epsin-dependent VEGFR2 endocytosis and physiological angiogenesis. Deletion of epsins in vessel endothelium produces uncontrolled tumor angiogenesis and retards tumor growth in animal models. The aim of this study is to test the therapeutic efficacy and targeting specificity of a chemically-synthesized peptide, UPI, which compete for epsin binding sites in VEGFR2 and potentially inhibits Epsin-VEGFR2 interaction in vivo, in an attempt to reproduce an epsin-deficient phenotype in tumor angiogenesis. Our data show that UPI treatment significantly inhibits and shrinks tumor growth in GL261 glioma tumor model. UPI peptide specifically targets VEGFR2 signaling pathway revealed by genetic and biochemical approaches. Furthermore, we demonstrated that UPI peptide treatment caused serious thrombosis in tumor vessels and damages tumor cells after a long-term UPI peptide administration. Besides, we revealed that UPI peptides were unexpectedly targeted cancer cells and induced apoptosis. We conclude that UPI peptide is a potent inhibitor to glioma tumor growth through specific targeting of VEGFR2 signaling in the tumor vasculature and cancer cells, which may offer a potentially novel treatment for cancer patients who are resistant to current anti-VEGF therapies.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/ultraestrutura , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/ultraestrutura , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/ultraestrutura , Marcação In Situ das Extremidades Cortadas , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Trombose/tratamento farmacológico , Trombose/etiologia , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
5.
Arterioscler Thromb Vasc Biol ; 37(9): 1674-1682, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28729363

RESUMO

OBJECTIVE: The chromatin remodeling enzyme BRG1 (brahma-related gene 1) transcriptionally regulates target genes important for early blood vessel development and primitive hematopoiesis. However, because Brg1 deletion in vascular progenitor cells results in lethal anemia by embryonic day 10.5 (E10.5), roles for BRG1 in embryonic vascular development after midgestation are unknown. In this study, we sought to determine whether endothelial cell BRG1 regulates genes important for vascular development or maintenance later in embryonic development. APPROACH AND RESULTS: Using mice with temporally inducible deletion of endothelial BRG1 (Brg1fl/fl;Cdh5(PAC)-CreERT2 ), we found that Brg1 excision between E9.5 and 11.5 results in capillary dilation and lethal hemorrhage by E14.5. This phenotype strongly resembles that seen when the SRF (serum response factor) transcription factor is deleted from embryonic endothelial cells. Although expression of Srf and several of its known endothelial cell target genes are downregulated in BRG1-depleted endothelial cells, we did not detect binding of BRG1 at these gene promoters, indicating that they are not direct BRG1 target genes. Instead, we found that BRG1 binds to the promoters of the SRF cofactors Mrtfa and Mrtfb (myocardin-related transcription factors A and B) in endothelial cells, and these genes are downregulated in Brg1-deficient endothelial cells. CONCLUSIONS: BRG1 promotes transcription of endothelial Mrtfa and Mrtfb, which elevates expression of SRF and SRF target genes that establish embryonic capillary integrity. These data highlight a new and temporally specific role for BRG1 in embryonic vasculature and provide novel information about epigenetic regulation of Mrtf expression and SRF signaling in developing blood vessels.


Assuntos
Capilares/metabolismo , DNA Helicases/metabolismo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neovascularização Fisiológica , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Antígenos CD/genética , Sítios de Ligação , Caderinas/genética , Capilares/embriologia , Linhagem Celular , DNA Helicases/deficiência , DNA Helicases/genética , Epigênese Genética , Genótipo , Idade Gestacional , Integrases/genética , Camundongos Knockout , Morfogênese , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fenótipo , Regiões Promotoras Genéticas , Interferência de RNA , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Transativadores/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transfecção
6.
Dev Biol ; 409(1): 218-233, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26542011

RESUMO

Lymph is returned to the blood circulation exclusively via four lymphovenous valves (LVVs). Despite their vital importance, the architecture and development of LVVs is poorly understood. We analyzed the formation of LVVs at the molecular and ultrastructural levels during mouse embryogenesis and identified three critical steps. First, LVV-forming endothelial cells (LVV-ECs) differentiate from PROX1(+) progenitors and delaminate from the luminal side of the veins. Second, LVV-ECs aggregate, align perpendicular to the direction of lymph flow and establish lympho-venous connections. Finally, LVVs mature with the recruitment of mural cells. LVV morphogenesis is disrupted in four different mouse models of primary lymphedema and the severity of LVV defects correlate with that of lymphedema. In summary, we have provided the first and the most comprehensive analysis of LVV development. Furthermore, our work suggests that aberrant LVVs contribute to lymphedema.


Assuntos
Vasos Linfáticos/embriologia , Linfedema/embriologia , Linfedema/patologia , Válvulas Venosas/embriologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Modelos Animais de Doenças , Células Endoteliais/patologia , Células Endoteliais/ultraestrutura , Vasos Linfáticos/ultraestrutura , Camundongos Endogâmicos C57BL , Morfogênese , Penetrância , Fenótipo , Válvulas Venosas/ultraestrutura
7.
Blood ; 125(14): 2286-96, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25631771

RESUMO

Extracellular histones are mediators of tissue injury and organ dysfunction; therefore they constitute potential therapeutic targets in sepsis, inflammation, and thrombosis. Histone cytotoxicity in vitro decreases in the presence of plasma. Here, we demonstrate that plasma inter-α inhibitor protein (IAIP) neutralizes the cytotoxic effects of histones and decreases histone-induced platelet aggregation. These effects are mediated through the negatively charged glycosaminoglycans (GAGs) chondroitin sulfate and high-molecular-weight hyaluronan (HMW-HA) associated with IAIP. Cell surface anionic glycosaminoglycans heparan sulfate and HA protect the cells against histone-mediated damage in vitro. Surface plasmon resonance showed that both IAIP and HMW-HA directly bind to recombinant histone H4. In vivo neutralization of histones with IAIP and HMW-HA prevented histone-induced thrombocytopenia, bleeding, and lung microvascular thrombosis, decreased neutrophil activation, and averted histone-induced production of inflammatory cytokines and chemokines. IAIP and HMW-HA colocalized with histones in necrotic tissues and areas that displayed neutrophil extracellular traps. Increasing amounts of IAIP-histone complexes detected in the plasma of septic baboons correlated with increase in histones and/or nucleosomes and consumption of plasma IAIP. Our data suggest that IAIP, chondroitin sulfate, and HMW-HA are potential therapeutic agents to protect against histone-induced cytotoxicity, coagulopathy, systemic inflammation, and organ damage during inflammatory conditions such as sepsis and trauma.


Assuntos
alfa-Globulinas/metabolismo , Glicosaminoglicanos/metabolismo , Hemorragia/prevenção & controle , Histonas/toxicidade , Inflamação/prevenção & controle , Sepse/prevenção & controle , Trombocitopenia/prevenção & controle , Trombose/prevenção & controle , Animais , Apoptose , Coagulação Sanguínea , Western Blotting , Células Cultivadas , Citocinas/metabolismo , Citometria de Fluxo , Glicocálix/metabolismo , Células HL-60 , Hemorragia/etiologia , Hemorragia/metabolismo , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nucleossomos/metabolismo , Papio , Agregação Plaquetária , Sepse/etiologia , Sepse/metabolismo , Trombocitopenia/etiologia , Trombocitopenia/metabolismo , Trombose/etiologia , Trombose/metabolismo
8.
PLoS Genet ; 9(12): e1004031, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348274

RESUMO

The extracellular matrix (ECM) supports vascular integrity during embryonic development. Proteolytic degradation of ECM components is required for angiogenesis, but excessive ECM proteolysis causes blood vessel fragility and hemorrhage. Little is understood about how ECM proteolysis is transcriptionally regulated during embryonic vascular development. We now show that the NuRD ATP-dependent chromatin-remodeling complex promotes vascular integrity by preventing excessive ECM proteolysis in vivo. Mice lacking endothelial CHD4--a catalytic subunit of NuRD complexes--died at midgestation from vascular rupture. ECM components surrounding rupture-prone vessels in Chd4 mutants were significantly downregulated prior to embryonic lethality. Using qPCR arrays, we found two critical mediators of ECM stability misregulated in mutant endothelial cells: the urokinase-type plasminogen activator receptor (uPAR or Plaur) was upregulated, and thrombospondin-1 (Thbs1) was downregulated. Chromatin immunoprecipitation assays showed that CHD4-containing NuRD complexes directly bound the promoters of these genes in endothelial cells. uPAR and THBS1 respectively promote and inhibit activation of the potent ECM protease plasmin, and we detected increased plasmin activity around rupture-prone vessels in Chd4 mutants. We rescued ECM components and vascular rupture in Chd4 mutants by genetically reducing urokinase (uPA or Plau), which cooperates with uPAR to activate plasmin. Our findings provide a novel mechanism by which a chromatin-remodeling enzyme regulates ECM stability to maintain vascular integrity during embryonic development.


Assuntos
DNA Helicases/genética , Matriz Extracelular/genética , Neovascularização Fisiológica/genética , Proteólise , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Montagem e Desmontagem da Cromatina/genética , DNA Helicases/biossíntese , Matriz Extracelular/metabolismo , Fibrinolisina/genética , Regulação da Expressão Gênica no Desenvolvimento , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Camundongos Transgênicos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/biossíntese , Trombospondina 1/biossíntese , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
9.
J Cell Mol Med ; 19(11): 2549-63, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26337158

RESUMO

Acute respiratory distress syndrome (ARDS) induced by severe sepsis can trigger persistent inflammation and fibrosis. We have shown that experimental sepsis in baboons recapitulates ARDS progression in humans, including chronic inflammation and long-lasting fibrosis in the lung. Complement activation products may contribute to the fibroproliferative response, suggesting that complement inhibitors are potential therapeutic agents. We have been suggested that treatment of septic baboons with compstatin, a C3 convertase inhibitor protects against ARDS-induced fibroproliferation. Baboons challenged with 10(9) cfu/kg (LD50) live E. coli by intravenous infusion were treated or not with compstatin at the time of challenge or 5 hrs thereafter. Changes in the fibroproliferative response at 24 hrs post-challenge were analysed at both transcript and protein levels. Gene expression analysis showed that sepsis induced fibrotic responses in the lung as early as 24 hrs post-bacterial challenge. Immunochemical and biochemical analysis revealed enhanced collagen synthesis, induction of profibrotic factors and increased cell recruitment and proliferation. Specific inhibition of complement with compstatin down-regulated sepsis-induced fibrosis genes, including transforming growth factor-beta (TGF-ß), connective tissue growth factor (CTGF), tissue inhibitor of metalloproteinase 1 (TIMP1), various collagens and chemokines responsible for fibrocyte recruitment (e.g. chemokine (C-C motif) ligand 2 (CCL2) and 12 (CCL12)). Compstatin decreased the accumulation of myofibroblasts and proliferating cells, reduced the production of fibrosis mediators (TGF-ß, phospho-Smad-2 and CTGF) and inhibited collagen deposition. Our data demonstrate that complement inhibition effectively attenuates collagen deposition and fibrotic responses in the lung after severe sepsis. Inhibiting complement could prove an attractive strategy for preventing sepsis-induced fibrosis of the lung.


Assuntos
Bacteriemia/tratamento farmacológico , Ativação do Complemento/efeitos dos fármacos , Inativadores do Complemento/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Pulmão/patologia , Peptídeos Cíclicos/uso terapêutico , Animais , Bacteriemia/imunologia , Bacteriemia/patologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/fisiopatologia , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia
10.
Blood ; 122(23): 3832-42, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24081661

RESUMO

Neutrophils emigrate from venules to sites of infection or injury in response to chemotactic gradients. How these gradients form is not well understood. Some IL-6 family cytokines stimulate endothelial cells to express adhesion molecules and chemokines that recruit leukocytes. Receptors for these cytokines share the signaling subunit gp130. We studied knockout mice lacking gp130 in endothelial cells. Unexpectedly, gp130-deficient endothelial cells constitutively expressed more CXCL1 in vivo and in vitro, and even more upon stimulation with tumor necrosis factor-α. Mobilization of this increased CXCL1 from intracellular stores to the venular surface triggered ß2 integrin-dependent arrest of neutrophils rolling on selectins but impaired intraluminal crawling and transendothelial migration. Superfusing CXCL1 over venules promoted neutrophil migration only after intravenously injecting mAb to CXCL1 to diminish its intravascular function or heparinase to release CXCL1 from endothelial proteoglycans. Remarkably, mice lacking gp130 in endothelial cells had impaired histamine-induced venular permeability, which was restored by injecting anti-P-selectin mAb to prevent neutrophil rolling and arrest. Thus, excessive CXCL1 expression in gp130-deficient endothelial cells augments neutrophil adhesion but hinders migration, most likely by disrupting chemotactic gradients. Our data define a role for endothelial cell gp130 in regulating integrin-dependent adhesion and de-adhesion of neutrophils during inflammation.


Assuntos
Quimiocina CXCL1/metabolismo , Receptor gp130 de Citocina/deficiência , Células Endoteliais/fisiologia , Neutrófilos/fisiologia , Animais , Permeabilidade Capilar/fisiologia , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Quimiocina CXCL1/genética , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/fisiologia , Inflamação/fisiopatologia , Migração e Rolagem de Leucócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Selectina-P/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Regulação para Cima , Vênulas/fisiologia
11.
Am J Respir Cell Mol Biol ; 50(2): 439-50, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24066737

RESUMO

Sepsis-induced inflammation of the lung leads to acute respiratory distress syndrome (ARDS), which may trigger persistent fibrosis. The pathology of ARDS is complex and poorly understood, and the therapeutic approaches are limited. We used a baboon model of Escherichia coli sepsis that mimics the complexity of human disease to study the pathophysiology of ARDS. We performed extensive biochemical, histological, and functional analyses to characterize the disease progression and the long-term effects of sepsis on the lung structure and function. Similar to humans, sepsis-induced ARDS in baboons displays an early inflammatory exudative phase, with extensive necrosis. This is followed by a regenerative phase dominated by proliferation of type 2 epithelial cells, expression of epithelial-to-mesenchymal transition markers, myofibroblast migration and proliferation, and collagen synthesis. Baboons that survived sepsis showed persistent inflammation and collagen deposition 6-27 months after the acute episodes. Long-term survivors had almost double the amount of collagen in the lung as compared with age-matched control animals. Immunostaining for procollagens showed persistent active collagen synthesis within the fibroblastic foci and interalveolar septa. Fibroblasts expressed markers of transforming growth factor-ß and platelet-derived growth factor signaling, suggesting their potential role as mediators of myofibroblast migration and proliferation, and collagen deposition. In parallel, up-regulation of the inhibitors of extracellular proteases supports a deregulated matrix remodeling that may contribute to fibrosis. The primate model of sepsis-induced ARDS mimics the disease progression in humans, including chronic inflammation and long-lasting fibrosis. This model helps our understanding of the pathophysiology of fibrosis and the testing of new therapies.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Escherichia coli , Síndrome do Desconforto Respiratório/metabolismo , Sepse/metabolismo , Lesão Pulmonar Aguda/fisiopatologia , Animais , Colágeno/metabolismo , Modelos Animais de Doenças , Fibrose/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Pulmão/metabolismo , Pulmão/patologia , Papio , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/fisiopatologia , Sepse/patologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo
12.
Biochim Biophys Acta ; 1832(12): 2153-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23959048

RESUMO

Free radicals play a major role in gliomas. By combining immuno-spin-trapping (IST) and molecular magnetic resonance imaging (mMRI), in vivo levels of free radicals were detected within mice bearing orthotopic GL261 gliomas. The nitrone spin trap DMPO (5,5-dimethyl pyrroline N-oxide) was administered prior to injection of an anti-DMPO probe (anti-DMPO antibody covalently bound to a bovine serum albumin (BSA)-Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-biotin MRI contrast agent) to trap tumor-associated free radicals. mMRI detected the presence of anti-DMPO adducts by either a significant sustained increase (p<0.001) in MR signal intensity or a significant decrease (p<0.001) in T1 relaxation, measured as %T1 change. In vitro assessment of the anti-DMPO probe indicated a significant decrease (p<0.0001) in T1 relaxation in GL261 cells that were oxidatively stressed with hydrogen peroxide, compared to controls. The biotin moiety of the anti-DMPO probe was targeted with fluorescently-labeled streptavidin to locate the anti-DMPO probe in excised brain tissues. As a negative control a non-specific IgG antibody covalently bound to the albumin-Gd-DTPA-biotin construct was used. DMPO adducts were also confirmed in tumor tissue from animals administered DMPO, compared to non-tumor brain tissue. GL261 gliomas were found to have significantly increased malondialdehyde (MDA) protein adducts (p<0.001) and 3-nitrotyrosine (3-NT) (p<0.05) compared to normal mouse brain tissue, indicating increased oxidized lipids and proteins, respectively. Co-localization of the anti-DMPO probe with either 3-NT or 4-hydroxynonenal was also observed. This is the first report regarding the detection of in vivo levels of free radicals from a glioma model.


Assuntos
Neoplasias Encefálicas/metabolismo , Óxidos N-Cíclicos/imunologia , Modelos Animais de Doenças , Radicais Livres/análise , Glioma/metabolismo , Imageamento por Ressonância Magnética , Detecção de Spin , Albuminas , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Meios de Contraste , Radicais Livres/isolamento & purificação , Gadolínio DTPA , Glioma/diagnóstico por imagem , Glioma/patologia , Imunoglobulina G/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Óxidos de Nitrogênio/metabolismo , Oxirredução , Radiografia , Marcadores de Spin/síntese química , Células Tumorais Cultivadas , Tirosina/análogos & derivados , Tirosina/metabolismo
13.
Infect Immun ; 80(12): 4374-87, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23027535

RESUMO

The lung is the site of entry for Bacillus anthracis in inhalation anthrax, the deadliest form of the disease. Bacillus anthracis produces virulence toxins required for disease. Alveolar macrophages were considered the primary target of the Bacillus anthracis virulence factor lethal toxin because lethal toxin inhibits mouse macrophages through cleavage of MEK signaling pathway components, but we have reported that human alveolar macrophages are not a target of lethal toxin. Our current results suggest that, unlike human alveolar macrophages, the cells lining the respiratory units of the lung, alveolar epithelial cells, are a target of lethal toxin in humans. Alveolar epithelial cells expressed lethal toxin receptor protein, bound the protective antigen component of lethal toxin, and were subject to lethal-toxin-induced cleavage of multiple MEKs. These findings suggest that human alveolar epithelial cells are a target of Bacillus anthracis lethal toxin. Further, no reduction in alveolar epithelial cell viability was observed, but lethal toxin caused actin rearrangement and impaired desmosome formation, consistent with impaired barrier function as well as reduced surfactant production. Therefore, by compromising epithelial barrier function, lethal toxin may play a role in the pathogenesis of inhalation anthrax by facilitating the dissemination of Bacillus anthracis from the lung in early disease and promoting edema in late stages of the illness.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Antraz/patologia , Antígenos de Bactérias/toxicidade , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/toxicidade , Infecções Respiratórias/patologia , Actinas/metabolismo , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/microbiologia , Animais , Antraz/microbiologia , Antígenos de Bactérias/genética , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Toxinas Bacterianas/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Infecções Respiratórias/microbiologia , Virulência
14.
Blood ; 116(6): 1002-10, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20466856

RESUMO

Severe sepsis leads to massive activation of coagulation and complement cascades that could contribute to multiple organ failure and death. To investigate the role of the complement and its crosstalk with the hemostatic system in the pathophysiology and therapeutics of sepsis, we have used a potent inhibitor (compstatin) administered early or late after Escherichia coli challenge in a baboon model of sepsis-induced multiple organ failure. Compstatin infusion inhibited sepsis-induced blood and tissue biomarkers of complement activation, reduced leucopenia and thrombocytopenia, and lowered the accumulation of macrophages and platelets in organs. Compstatin decreased the coagulopathic response by down-regulating tissue factor and PAI-1, diminished global blood coagulation markers (fibrinogen, fibrin-degradation products, APTT), and preserved the endothelial anticoagulant properties. Compstatin treatment also improved cardiac function and the biochemical markers of kidney and liver damage. Histologic analysis of vital organs collected from animals euthanized after 24 hours showed decreased microvascular thrombosis, improved vascular barrier function, and less leukocyte infiltration and cell death, all consistent with attenuated organ injury. We conclude that complement-coagulation interplay contributes to the progression of severe sepsis and blocking the harmful effects of complement activation products, especially during the organ failure stage of severe sepsis is a potentially important therapeutic strategy.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Proteínas Inativadoras do Complemento/farmacologia , Infecções por Escherichia coli , Insuficiência de Múltiplos Órgãos/prevenção & controle , Peptídeos Cíclicos/farmacologia , Sepse , Animais , Biomarcadores/sangue , Coagulação Sanguínea/imunologia , Pressão Sanguínea/efeitos dos fármacos , Ativação do Complemento/efeitos dos fármacos , Proteínas Inativadoras do Complemento/metabolismo , Citocinas/sangue , Modelos Animais de Doenças , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/imunologia , Insuficiência de Múltiplos Órgãos/sangue , Insuficiência de Múltiplos Órgãos/imunologia , Papio , Sepse/sangue , Sepse/tratamento farmacológico , Sepse/imunologia
15.
Arterioscler Thromb Vasc Biol ; 31(12): 2881-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21940951

RESUMO

OBJECTIVE: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an adult-onset neurovascular disorder caused by stereotyped mutations in the NOTCH3 receptor. Elucidation of its pathobiology is still incomplete and remains a challenge, in part because the available preclinical mouse models to date do not reproduce the full spectrum of CADASIL pathology and clinical disease. METHODS AND RESULTS: Here, we report a novel knock-in mouse with Arg170Cys substitution in murine Notch3, corresponding to the prevalent Arg169Cys substitution in CADASIL. The Notch3(Arg170Cys) mice displayed late-onset, dominant CADASIL arteriopathy with typical granular osmiophilic material deposition and developed brain histopathology including thrombosis, microbleeds, gliosis, and microinfarction. Furthermore, Notch3(Arg170Cys) mice experienced neurological symptoms with motor defects such as staggering gait and limb paresis. CONCLUSIONS: This model, for the first time, phenocopies the arteriopathy and the histopathologic as well as clinical features of CADASIL and may offer novel opportunities to investigate disease pathogenesis.


Assuntos
Arginina , CADASIL/genética , CADASIL/patologia , Cistina , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Receptores Notch/genética , Animais , Encéfalo/patologia , CADASIL/fisiopatologia , Capilares/patologia , Fertilidade/fisiologia , Camundongos , Atividade Motora/fisiologia , Músculo Liso Vascular/patologia , Mutação/genética , Receptor Notch3
16.
J Cell Mol Med ; 15(4): 837-49, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20497492

RESUMO

Angiogenesis is essential to tumour progression and a precise evaluation of angiogenesis is important for tumour early diagnosis and treatment. The quantitative and dynamic in vivo assessment of tumour angiogenesis can be achieved by molecular magnetic resonance imaging (mMRI). Vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) are the main regulatory systems in angiogenesis and have been used as hot targets for radionuclide-based molecular imaging. However, little research has been accomplished in targeting VEGF/VEGFRs by mMRI. In our study, we aimed to assess the expression of VEGFR2 in C6 gliomas by using a specific molecular probe with mMRI. The differential uptake of the probe conjugated to anti-VEGFR2 monoclonal antibody, shown by varied increases in T(1) signal intensity during a 2 hr period, demonstrated the heterogeneous expression of VEGFR2 in different tumour regions. Microscopic fluorescence imaging, obtained for the biotin group in the probe with streptavidin-Cy3, along with staining for cellular VEGFR2 levels, laminin and CD45, confirmed the differential distribution of the probe which targeted VEGFR2 on endothelial cells. The angiogenesis process was also assessed using magnetic resonance angiography, which quantified tumour blood volume and provided a macroscopic view and a dynamic change of the correlation between tumour vasculature and VEGFR2 expression. Together these results suggest mMRI can be very useful in assessing and characterizing the expression of specific angiogenic markers in vivo and help evaluate angiogenesis associated with tumour progression.


Assuntos
Glioma/metabolismo , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Biotina/metabolismo , Western Blotting , Linhagem Celular Tumoral , Glioma/irrigação sanguínea , Glioma/patologia , Imuno-Histoquímica , Angiografia por Ressonância Magnética , Masculino , Sondas Moleculares/metabolismo , Neovascularização Patológica/metabolismo , Ácido Pentético/metabolismo , Ratos , Ratos Endogâmicos F344 , Reprodutibilidade dos Testes , Soroalbumina Bovina/metabolismo
17.
J Clin Invest ; 118(11): 3725-37, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18924607

RESUMO

Mucin-type O-glycans (O-glycans) are highly expressed in vascular ECs. However, it is not known whether they are important for vascular development. To investigate the roles of EC O-glycans, we generated mice lacking T-synthase, a glycosyltransferase encoded by the gene C1galt1 that is critical for the biosynthesis of core 1-derived O-glycans, in ECs and hematopoietic cells (termed here EHC T-syn(-/-) mice). EHC T-syn(-/-) mice exhibited embryonic and neonatal lethality associated with disorganized and blood-filled lymphatic vessels. Bone marrow transplantation and EC C1galt1 transgene rescue demonstrated that lymphangiogenesis specifically requires EC O-glycans, and intestinal lymphatic microvessels in EHC T-syn(-/-) mice expressed a mosaic of blood and lymphatic EC markers. The level of O-glycoprotein podoplanin was significantly reduced in EHC T-syn(-/-) lymphatics, and podoplanin-deficient mice developed blood-filled lymphatics resembling EHC T-syn(-/-) defects. In addition, postnatal inactivation of C1galt1 caused blood/lymphatic vessel misconnections that were similar to the vascular defects in the EHC T-syn(-/-) mice. One consequence of eliminating T-synthase in ECs and hematopoietic cells was that the EHC T-syn(-/-) pups developed fatty liver disease, because of direct chylomicron deposition via misconnected portal vein and intestinal lymphatic systems. Our studies therefore demonstrate that EC O-glycans control the separation of blood and lymphatic vessels during embryonic and postnatal development, in part by regulating podoplanin expression.


Assuntos
Células Endoteliais/imunologia , Fígado Gorduroso/imunologia , Galactosiltransferases/deficiência , Vasos Linfáticos/imunologia , Microvasos/imunologia , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Fígado Gorduroso/metabolismo , Galactosiltransferases/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/ultraestrutura , Camundongos , Camundongos Transgênicos , Microvasos/metabolismo , Microvasos/ultraestrutura , Transgenes
18.
Cell Death Differ ; 28(11): 3009-3021, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33993195

RESUMO

The liver has recently been identified as a major organ for destruction of desialylated platelets. However, the underlying mechanism remains unclear. Kupffer cells, which are professional phagocytic cells in the liver, comprise the largest population of resident tissue macrophages in the body. Kupffer cells express a C-type lectin receptor, CLEC4F, that recognizes desialylated glycans with an unclear in vivo role in mediating platelet destruction. In this study, we generated a CLEC4F-deficient mouse model (Clec4f-/-) and found that CLEC4F was specifically expressed by Kupffer cells. Using the Clec4f-/- mice and a newly generated platelet-specific reporter mouse line, we revealed a critical role for CLEC4F on Kupffer cells in mediating destruction of desialylated platelets in the liver in vivo. Platelet clearance experiments and ultrastructural analysis revealed that desialylated platelets were phagocytized predominantly by Kupffer cells in a CLEC4F-dependent manner in mice. Collectively, these findings identify CLEC4F as a Kupffer cell receptor important for the destruction of desialylated platelets induced by bacteria-derived neuraminidases, which provide new insights into the pathogenesis of thrombocytopenia in disease conditions such as sepsis.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Receptores Imunológicos/metabolismo , Animais , Modelos Animais de Doenças , Camundongos
19.
JCI Insight ; 6(14)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34291736

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a pandemic. Severe disease is associated with dysfunction of multiple organs, but some infected cells do not express ACE2, the canonical entry receptor for SARS-CoV-2. Here, we report that the C-type lectin receptor L-SIGN interacted in a Ca2+-dependent manner with high-mannose-type N-glycans on the SARS-CoV-2 spike protein. We found that L-SIGN was highly expressed on human liver sinusoidal endothelial cells (LSECs) and lymph node lymphatic endothelial cells but not on blood endothelial cells. Using high-resolution confocal microscopy imaging, we detected SARS-CoV-2 viral proteins within the LSECs from liver autopsy samples from patients with COVID-19. We found that both pseudo-typed virus enveloped with SARS-CoV-2 spike protein and authentic SARS-CoV-2 virus infected L-SIGN-expressing cells relative to control cells. Moreover, blocking L-SIGN function reduced CoV-2-type infection. These results indicate that L-SIGN is a receptor for SARS-CoV-2 infection. LSECs are major sources of the clotting factors vWF and factor VIII (FVIII). LSECs from liver autopsy samples from patients with COVID-19 expressed substantially higher levels of vWF and FVIII than LSECs from uninfected liver samples. Our data demonstrate that L-SIGN is an endothelial cell receptor for SARS-CoV-2 that may contribute to COVID-19-associated coagulopathy.


Assuntos
COVID-19 , Capilares , Moléculas de Adesão Celular/metabolismo , Células Endoteliais , Lectinas Tipo C/metabolismo , Fígado/irrigação sanguínea , Vasos Linfáticos , Receptores de Superfície Celular/metabolismo , SARS-CoV-2/fisiologia , COVID-19/metabolismo , COVID-19/patologia , COVID-19/virologia , Capilares/metabolismo , Capilares/patologia , Capilares/virologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/virologia , Perfilação da Expressão Gênica/métodos , Humanos , Fígado/patologia , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Vasos Linfáticos/virologia , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus
20.
Am J Nucl Med Mol Imaging ; 11(5): 363-373, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754607

RESUMO

The blood-brain barrier (BBB) is usually impermeable to several drugs, which hampers treatment of various brain-related diseases/disorders. There have been several approaches to open the BBB, including intracarotid infusion of hyperosmotic concentrations of arabinose, mannitol, oleic or linoleic acids, or alkylglycerols, intravenous infusion of bradykinin B2, administration of a fragment of the ZO toxin from vibrio cholera, targeting specific components of the tight junctions (e.g. claudin-5) with siRNA or novel peptidomimetic drugs, or the use of ultrasound with microbubbles. We propose the use of a low molecular weight (MW), nitrone-type compound, OKN-007, which can temporarily open up the BBB for 1-2 hours. Gadolinium (Gd)-based compounds assessed ranged in MW from 546 (Gd-DTPA) to 465 kDa (ß-galactosidase-Gd-DOTA). We also included an albumin-based CA (albumin-Gd-DTPA-biotin) for assessment, as well as an antibody (Ab) against a neuron-specific biomarker conjugated to Gd-DOTA (anti-EphB2-Gd-DOTA). For the anti-EphB2 (goat Ab)-Gd-DOTA assessment, we utilized an anti-goat Ab conjugated with horse radish peroxidase (HRP) for confirmation of the presence of the anti-EphB2-Gd-DOTA probe. In addition, a Cy5 labeled anti-EphB2 Ab was co-administered with the anti-EphB2-Gd-DOTA probe, and assessed ex vivo. This study demonstrates that OKN-007 may be able to temporarily open up the BBB to augment the delivery of various compounds ranging in MW from as small as ~550 to as large as ~470 kDa. This compound is an investigational new drug for glioblastoma (GBM) therapy in clinical trials. The translational capability for human use to augment the delivery of non-BBB-permeable drugs is extremely high.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA