Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Mater ; 21(7): 826-835, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35668147

RESUMO

Deciphering the neural patterns underlying brain functions is essential to understanding how neurons are organized into networks. This deciphering has been greatly facilitated by optogenetics and its combination with optoelectronic devices to control neural activity with millisecond temporal resolution and cell type specificity. However, targeting small brain volumes causes photoelectric artefacts, in particular when light emission and recording sites are close to each other. We take advantage of the photonic properties of tapered fibres to develop integrated 'fibertrodes' able to optically activate small brain volumes with abated photoelectric noise. Electrodes are positioned very close to light emitting points by non-planar microfabrication, with angled light emission allowing the simultaneous optogenetic manipulation and electrical read-out of one to three neurons, with no photoelectric artefacts, in vivo. The unconventional implementation of two-photon polymerization on the curved taper edge enables the fabrication of recoding sites all around the implant, making fibertrodes a promising complement to planar microimplants.


Assuntos
Artefatos , Optogenética , Encéfalo , Eletrodos , Neurônios/fisiologia
2.
Nat Methods ; 16(11): 1185-1192, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591577

RESUMO

Fiber photometry is increasingly utilized to monitor fluorescent sensors of neural activity in the brain. However, most implementations are based on flat-cleaved optical fibers that can only interface with shallow tissue volumes adjacent to the fiber. We exploit modal properties of tapered optical fibers (TFs) to enable light collection over an extent of up to 2 mm of tissue and multisite photometry along the taper. Using a single TF, we simultaneously observed distinct dopamine transients in dorsal and ventral striatum in freely moving mice performing a simple, operant conditioning task. Collection volumes from TFs can also be engineered in both shape and size by microstructuring the nonplanar surface of the taper, to optically target multiple sites not only in the deep brain but, in general, in any biological system or organ in which light collection is beneficial but challenging because of light scattering and absorption.


Assuntos
Fibras Ópticas , Fotometria/métodos , Animais , Corpo Estriado/metabolismo , Dopamina/metabolismo , Fluorescência , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Opt Express ; 28(15): 21368-21381, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752416

RESUMO

We propose a feedback-assisted direct laser writing method to perform laser ablation of fiber optic devices in which their light-collection signal is used to optimize their properties. A femtosecond-pulsed laser beam is used to ablate a metal coating deposited around a tapered optical fiber, employed to show the suitability of the approach to pattern devices with a small radius of curvature. During processing, the same pulses generate two-photon fluorescence in the surrounding environment and the signal is monitored to identify different patterning regimes over time through spectral analysis. The employed fs beam mostly interacts with the metal coating, leaving almost intact the underlying silica and enabling fluorescence to couple with a specific subset of guided modes, as verified by far-field analysis. Although the method is described here for tapered optical fibers used to obtain efficient light collection in the field of optical neural interfaces, it can be easily extended to other waveguide-based devices and represents a general approach to support the implementation of a closed-loop laser ablation system of fiber optics.

4.
Opt Lett ; 45(14): 3856-3859, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32667302

RESUMO

Tapered optical fibers (TFs) were recently employed for depth-resolved monitoring of functional fluorescence in subcortical brain structures, enabling light collection from groups of a few cells through small optical windows located on the taper edge [Pisano et al., Nat. Methods16, 1185 (2019)1548-709110.1038/s41592-019-0581-x]. Here we present a numerical model to estimate light collection properties of microstructured TFs implanted in scattering brain tissue. Ray tracing coupled with the Henyey-Greenstein scattering model enables the estimation of both light collection and fluorescence excitation fields in three dimensions, whose combination is employed to retrieve the volume of tissue probed by the device.

5.
Nanotechnology ; 31(43): 435301, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32659749

RESUMO

Fabricating plasmonic nanostructures with good optical performances often requires lengthy and challenging patterning processes that can hardly be transferred to unconventional substrates, such as optical fiber tips or curved surfaces. Here we investigate the use of a single Ga focused ion beam process to fabricate 2D arrays of gold nanoplatelets for nanophotonic applications. While observing that focused ion beam milling of crossing tapered grooves inherently produces gaps below 20 nm, we provide experimental and theoretical evidence for the spectral features of grooves terminating with a sharp air gap. We show that transmission near 10% can be obtained via two-dimensional nano-focusing in a finite subset of 2D arrays of gold nanoplatelets. This enables the application of our nanostructure to detect variations in the refractive index of thin films using either reflected or transmitted light when a small number of elements are engaged.

6.
Microelectron Eng ; 195: 41-49, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31198228

RESUMO

With the advent of optogenetic techniques, a major need for precise and versatile light-delivery techniques has arisen from the neuroscience community. Driven by this demand, research on innovative illuminating devices has opened previously inaccessible experimental paths. However, tailoring light delivery to functionally and anatomically diverse brain structures still remains a challenging task. We progressed in this endeavor by micro-structuring metal-coated tapered optical fibers and exploiting the resulting mode-division multiplexing/demultiplexing properties. To do this, a non-conventional Focused Ion Beam (FIB) milling method was developed in order to pattern the non-planar surface of the taper around the full 360°, by equipping the FIB chamber with a micromanipulation system. This led us to develop three novel typologies of micro-structured illuminating tools: (a) a tapered fiber that emits light from a narrow slot of adjustable length; (b) a tapered fiber that emits light from four independently addressable optical windows; (c) a tapered fiber that emits light from an annular aperture with 360° symmetry. The result is a versatile technology enabling reconfigurable light-delivery that can be tailored to specific experimental needs.

7.
Biomed Opt Express ; 12(2): 993-1010, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33680555

RESUMO

As the scientific community seeks efficient optical neural interfaces with sub-cortical structures of the mouse brain, a wide set of technologies and methods is being developed to monitor cellular events through fluorescence signals generated by genetically encoded molecules. Among these technologies, tapered optical fibers (TFs) take advantage of the modal properties of narrowing waveguides to enable both depth-resolved and wide-volume light collection from scattering tissue, with minimized invasiveness with respect to standard flat fiber stubs (FFs). However, light guided in patch cords as well as in FFs and TFs can result in autofluorescence (AF) signal, which can act as a source of time-variable noise and limit their application to probe fluorescence lifetime in vivo. In this work, we compare the AF signal of FFs and TFs, highlighting the influence of the cladding composition on AF generation. We show that the autofluorescence signal generated in TFs has a peculiar coupling pattern with guided modes, and that far-field detection can be exploited to separate functional fluorescence from AF. On these bases, we provide evidence that TFs can be employed to implement depth-resolved fluorescence lifetime photometry, potentially enabling the extraction of a new set of information from deep brain regions, as time-correlating single photon counting starts to be applied in freely-moving animals to monitor the intracellular biochemical state of neurons.

8.
Artigo em Inglês | MEDLINE | ID: mdl-30452350

RESUMO

Optogenetics sets new experimental paradigms that can reveal cell type-specific contributions on the neural basis of behavior. Since most of the available systems for this purpose are based on approaches that tether animals to a set of cables, recent research activities have been focused on minimizing external factors that can alter animal movements. Current wireless optogenetic systems are based on waveguide-coupled LED and implanted LEDs. However, each configuration separately suffers from significant limitations, such as low coupling efficiency, penetration depth and invasiveness of waveguide-coupled LED, and local heat generated by implanted µLEDs. This work presents a novel wireless head-mountable stimulating system for a wide-volume light delivery. The device couples the output of a semiconductor laser diode (LD) to a tapered optical fiber (TF) on a wireless platform. The LD-TF coupling was engineered by setting up far-field analysis, which allows the full exploitation of the mode division demultiplexing properties of TFs. The output delivered light along the tapered segment is capable of stimulating structures of depths up to ~2mm. TFs are tapered to a gradual taper angle (2° to 10°) that ends with a sharp tip (~500 nm) for smooth insertion and less invasiveness. Thus, the proposed system extends the capabilities of wireless optogenetic by offering a novel solution for wide volume light delivery in deep brain regions.

9.
Sci Rep ; 8(1): 4467, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535413

RESUMO

Optogenetic control of neural activity in deep brain regions ideally requires precise and flexible light delivery with non-invasive devices. To this end, Tapered Optical Fibers (TFs) represent a versatile tool that can deliver light over either large brain volumes or spatially confined sub-regions, while being sensibly smaller than flat-cleaved optical fibers. In this work, we report on the possibility of further extending light emission length along the taper in the range 0.4 mm-3.0 mm by increasing the numerical aperture of the TFs to NA = 0.66. We investigated the dependence between the input angle of light (θin) and the output position along the taper, finding that for θin > 10° this relationship is linear. This mode-division demultiplexing property of the taper was confirmed with a ray tracing model and characterized for 473 nm and 561 nm light in quasi-transparent solution and in brain slices, with the two wavelengths used to illuminate simultaneously two different regions of the brain using only one waveguide. The results presented in this manuscript can guide neuroscientists to design their optogenetic experiments on the base of this mode-division demultiplexing approach, providing a tool that potentially allow for dynamic targeting of regions with diverse extension, from the mouse VTA up to the macaque visual cortex.


Assuntos
Optogenética/instrumentação , Estimulação Luminosa/instrumentação , Córtex Visual/fisiologia , Animais , Humanos , Masculino , Fibras Ópticas
10.
Front Neurosci ; 12: 771, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416424

RESUMO

Optogenetics offers many advantages in terms of cell-type specificity, allowing to investigate functional connectivity between different brain areas at high spatial and neural population selectivity. In order to obtain simultaneous optical control and electrical readout of neural activity, devices called "optrodes" are employed. They are typically composed of a linear array of microelectrodes integrated on a slender probe shafts combined with flat-cleaved optical fibers (FF) placed above the recording sites. However, due to tissue absorption and scattering, light delivered by the FF unevenly illuminates the region of interest. This issue is of particular relevance when cellular populations are disposed along the dorso-ventral axis, such as in medial prefrontal cortex (mPFC) where cortical layers are aligned vertically. The study presented here aims at using tapered optical fibers (TFs) in combination with a 16-electrode neural probe to better access neural populations distributed along the dorso-ventral axis in the mPFC of newborn mice, restricting light delivery over a specific portion of the cortical layer of interest. Half of the TF surface is coated with a reflecting metal blocking the light to enable light delivery from one side of the probe's shaft only, with the probe base being designed to host the fiber without interfering with the wire-bonds that connect the recording sites to a printed circuit board. Monte-Carlo simulations have been implemented to define the relative TF-probe position and to identify the light intensity distribution above the recording sites. In vivo recordings indicate that simultaneous optical stimulation and electrical readout of neural activity in the mPFC benefit from the use of the engineered TF-based optrode in terms of a more uniform light distribution along the dorso-ventral axis and the possibility of restricting light delivery to a subset of electrical recording sites of interest.

11.
Nat Neurosci ; 20(8): 1180-1188, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628101

RESUMO

Optogenetics promises precise spatiotemporal control of neural processes using light. However, the spatial extent of illumination within the brain is difficult to control and cannot be adjusted using standard fiber optics. We demonstrate that optical fibers with tapered tips can be used to illuminate either spatially restricted or large brain volumes. Remotely adjusting the light input angle to the fiber varies the light-emitting portion of the taper over several millimeters without movement of the implant. We use this mode to activate dorsal versus ventral striatum of individual mice and reveal different effects of each manipulation on motor behavior. Conversely, injecting light over the full numerical aperture of the fiber results in light emission from the entire taper surface, achieving broader and more efficient optogenetic activation of neurons, compared to standard flat-faced fiber stimulation. Thus, tapered fibers permit focal or broad illumination that can be precisely and dynamically matched to experimental needs.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Fibras Ópticas , Estimulação Luminosa , Animais , Feminino , Masculino , Camundongos Transgênicos , Optogenética/métodos , Estimulação Luminosa/métodos , Rodopsina/genética
12.
Front Neurosci ; 10: 70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27013939

RESUMO

In last decade, the possibility to optically interface with the mammalian brain in vivo has allowed unprecedented investigation of functional connectivity of neural circuitry. Together with new genetic and molecular techniques to optically trigger and monitor neural activity, a new generation of optical neural interfaces is being developed, mainly thanks to the exploitation of both bottom-up and top-down nanofabrication approaches. This review highlights the role of nanotechnologies for optical neural interfaces, with particular emphasis on new devices and methodologies for optogenetic control of neural activity and unconventional methods for detection and triggering of action potentials using optically-active colloidal nanoparticles.

13.
Front Neurosci ; 10: 468, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27746718

RESUMO

[This corrects the article on p. 70 in vol. 10, PMID: 27013939.].

14.
Biomed Opt Express ; 6(10): 4014-26, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26504650

RESUMO

Optogenetic approaches to manipulate neural activity have revolutionized the ability of neuroscientists to uncover the functional connectivity underlying brain function. At the same time, the increasing complexity of in vivo optogenetic experiments has increased the demand for new techniques to precisely deliver light into the brain, in particular to illuminate selected portions of the neural tissue. Tapered and nanopatterned gold-coated optical fibers were recently proposed as minimally invasive multipoint light delivery devices, allowing for site-selective optogenetic stimulation in the mammalian brain [Pisanello , Neuron82, 1245 (2014)]. Here we demonstrate that the working principle behind these devices is based on the mode-selective photonic properties of the fiber taper. Using analytical and ray tracing models we model the finite conductance of the metal coating, and show that single or multiple optical windows located at specific taper sections can outcouple only specific subsets of guided modes injected into the fiber.

15.
Sci Rep ; 5: 10531, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26013699

RESUMO

Cancer cell motility is one of the major events involved in metastatic process. Tumor cells that disseminate from a primary tumor can migrate into the vascular system and, being carried by the bloodstream, transmigrate across the endothelium, giving rise to a new tumor site. However, during the invasive process, tumor cells must pass through the extracellular matrix, whose structural and mechanical properties define the parameters of the migration process. Here, we propose 3D-complex cage-like microstructures, realized by two-photon (TP) direct laser writing (DLW), to analyze cell migration through pores significantly smaller than the cell nucleus. We found that the ability to traverse differently sized pores depends on the metastatic potential and on the invasiveness of the cell lines, allowing to establish a pore-area threshold value able to discriminate between non-tumorigenic and tumorigenic human breast cells.


Assuntos
Microscopia Confocal , Imagem com Lapso de Tempo , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Cocultura , Humanos , Miosina não Muscular Tipo IIA/metabolismo
16.
Neuron ; 82(6): 1245-54, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24881834

RESUMO

Optical stimulation and silencing of neural activity is a powerful technique for elucidating the structure and function of neural circuitry. In most in vivo optogenetic experiments, light is delivered into the brain through a single optical fiber. However, this approach limits illumination to a fixed volume of the brain. Here a focused ion beam is used to pattern multiple light windows on a tapered optical fiber. We show that such fibers allow selective and dynamic illumination of different brain regions along the taper. Site selection is achieved by a simple coupling strategy at the fiber input, and the use of a single tapered waveguide minimizes the implant invasiveness. We demonstrate the effectiveness of this approach for multipoint optical stimulation in the mammalian brain in vivo by coupling the fiber to a microelectrode array and performing simultaneous extracellular recording and stimulation at multiple sites in the mouse striatum and cerebral cortex.


Assuntos
Encéfalo/fisiologia , Eletrodos Implantados , Microeletrodos , Fibras Ópticas , Optogenética/métodos , Estimulação Luminosa/métodos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/fisiologia , Optogenética/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA