Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(15): e2110866120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37018201

RESUMO

Addressing climate change and biodiversity loss will be the defining ecological, political, and humanitarian challenge of our time. Alarmingly, policymakers face a narrowing window of opportunity to prevent the worst impacts, necessitating complex decisions about which land to set aside for biodiversity preservation. Yet, our ability to make these decisions is hindered by our limited capacity to predict how species will respond to synergistic drivers of extinction risk. We argue that a rapid integration of biogeography and behavioral ecology can meet these challenges because of the distinct, yet complementary levels of biological organization they address, scaling from individuals to populations, and from species and communities to continental biotas. This union of disciplines will advance efforts to predict biodiversity's responses to climate change and habitat loss through a deeper understanding of how biotic interactions and other behaviors modulate extinction risk, and how responses of individuals and populations impact the communities in which they are embedded. Fostering a rapid mobilization of expertise across behavioral ecology and biogeography is a critical step toward slowing biodiversity loss.


Assuntos
Biodiversidade , Ecossistema , Humanos , Biota , Mudança Climática , Ecologia
2.
Proc Natl Acad Sci U S A ; 119(29): e2121036119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858351

RESUMO

Many processes of biological diversification can simultaneously affect multiple evolutionary lineages. Examples include multiple members of a gene family diverging when a region of a chromosome is duplicated, multiple viral strains diverging at a "super-spreading" event, and a geological event fragmenting whole communities of species. It is difficult to test for patterns of shared divergences predicted by such processes because all phylogenetic methods assume that lineages diverge independently. We introduce a Bayesian phylogenetic approach to relax the assumption of independent, bifurcating divergences by expanding the space of topologies to include trees with shared and multifurcating divergences. This allows us to jointly infer phylogenetic relationships, divergence times, and patterns of divergences predicted by processes of diversification that affect multiple evolutionary lineages simultaneously or lead to more than two descendant lineages. Using simulations, we find that the method accurately infers shared and multifurcating divergence events when they occur and performs as well as current phylogenetic methods when divergences are independent and bifurcating. We apply our approach to genomic data from two genera of geckos from across the Philippines to test if past changes to the islands' landscape caused bursts of speciation. Unlike previous analyses restricted to only pairs of gecko populations, we find evidence for patterns of shared divergences. By generalizing the space of phylogenetic trees in a way that is independent from the likelihood model, our approach opens many avenues for future research into processes of diversification across the life sciences.


Assuntos
Biodiversidade , Lagartos , Filogenia , Animais , Teorema de Bayes , Genoma , Lagartos/classificação , Lagartos/genética
3.
J Anat ; 239(3): 693-703, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33870497

RESUMO

Reduced limbs and limblessness have evolved independently in many lizard clades. Scincidae exhibit a wide range of limb-reduced morphologies, but only some species have been used to study the embryology of limb reduction (e.g., digit reduction in Chalcides and limb reduction in Scelotes). The genus Brachymeles, a Southeast Asian clade of skinks, includes species with a range of limb morphologies, from pentadactyl to functionally and structurally limbless species. Adults of the small, snake-like species Brachymeles lukbani show no sign of external limbs in the adult except for small depressions where they might be expected to occur. Here, we show that embryos of B. lukbani in early stages of development, on the other hand, show a truncated but well-developed limb with a stylopod and a zeugopod, but no signs of an autopod. As development proceeds, the limb's small size persists even while the embryo elongates. These observations are made based on external morphology. We used florescent whole-mount immunofluorescence to visualize the morphology of skeletal elements and muscles within the embryonic limb of B. lukabni. Early stages have a humerus and separated ulna and radius cartilages; associated with these structures are dorsal and ventral muscle masses as those found in the embryos of other limbed species. While the limb remains small, the pectoral girdle grows in proportion to the rest of the body, with well-developed skeletal elements and their associated muscles. In later stages of development, we find the small limb is still present under the skin, but there are few indications of its presence, save for the morphology of the scale covering it. By use of CT scanning, we find that the adult morphology consists of a well-developed pectoral girdle, small humerus, extremely reduced ulna and radius, and well-developed limb musculature connected to the pectoral girdle. These muscles form in association with a developing limb during embryonic stages, a hint that "limbless" lizards that possess these muscles may have or have had at least transient developing limbs, as we find in B. lukbani. Overall, this newly observed pattern of ontogenetic reduction leads to an externally limbless adult in which a limb rudiment is hidden and covered under the trunk skin, a situation called cryptomelia. The results of this work add to our growing understanding of clade-specific patterns of limb reduction and the convergent evolution of limbless phenotypes through different developmental processes.


Assuntos
Desenvolvimento Embrionário/fisiologia , Membro Anterior/anatomia & histologia , Membro Posterior/anatomia & histologia , Lagartos/anatomia & histologia , Animais , Membro Anterior/embriologia , Membro Posterior/embriologia , Filogenia
4.
Proc Biol Sci ; 287(1938): 20201994, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33171093

RESUMO

Evolutionary reversals, including re-evolution of lost structures, are commonly found in phylogenetic studies. However, we lack an understanding of how these reversals happen mechanistically. A snake-like body form has evolved many times in vertebrates, and occasionally a quadrupedal form has re-evolved, including in Brachymeles lizards. We use body form and locomotion data for species ranging from snake-like to quadrupedal to address how a quadrupedal form could re-evolve. We show that large, quadrupedal species are faster at burying and surface locomotion than snake-like species, indicating a lack of expected performance trade-off between these modes of locomotion. Species with limbs use them while burying, suggesting that limbs are useful for burying in wet, packed substrates. Palaeoclimatological data suggest that Brachymeles originally evolved a snake-like form under a drier climate probably with looser soil in which it was easier to dig. The quadrupedal clade evolved as the climate became humid, where limbs and large size facilitated fossorial locomotion in packed soils.


Assuntos
Evolução Biológica , Clima , Lagartos/anatomia & histologia , Animais , Locomoção , Filogenia
5.
Mol Phylogenet Evol ; 146: 106754, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32028030

RESUMO

Recognizing species-level diversity is important for studying evolutionary patterns across biological disciplines and is critical for conservation efforts. However, challenges remain in delimiting species-level diversity, especially in cryptic radiations where species are genetically divergent but show little morphological differentiation. Using multilocus molecular data, phylogenetic analyses, species delimitation analyses, and morphological data, we examine lineage diversification in a cryptic radiation of Riopa skinks in Myanmar. Four species of Riopa skinks are currently recognized from Myanmar based on morphological traits, but the boundaries between three of these species, R. anguina, R. lineolata, and R. popae, are not well-defined. We find high levels of genetic diversity within these three species. Our analyses suggest that they may comprise as many as 12 independently evolving lineages, highlighting the extent to which species diversity in the region is underestimated. However, quantitative trait data suggest that these lineages have not differentiated morphologically, possibly indicating that this cryptic radiation represents non-adaptive evolution, although additional data is needed to corroborate this.


Assuntos
Lagartos/classificação , Animais , Teorema de Bayes , Variação Genética , Lagartos/anatomia & histologia , Lagartos/genética , Mianmar , Filogenia , Filogeografia
6.
Mol Phylogenet Evol ; 146: 106731, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31904508

RESUMO

Recent phylogenetic studies of gekkonid lizards have revealed unexpected, widespread paraphyly and polyphyly among genera, unclear generic boundaries, and a tendency towards the nesting of taxa exhibiting specialized, apomorphic morphologies within geographically widespread "generalist" clades. This is especially true in Australasia, where monophyly of Gekko proper has been questioned with respect to phenotypically ornate flap-legged geckos of the genus Luperosaurus, the Philippine false geckos of the genus Pseudogekko, and even the elaborately "derived" parachute geckos of the genus Ptychozoon. Here we employ sequence capture targeting 5060 ultraconserved elements (UCEs) to infer phylogenomic relationships among 42 representative ingroup gekkonine lizard taxa. We analyze multiple datasets of varying degrees of completeness (10, 50, 75, 95, and 100 percent complete with 4715, 4051, 3376, 2366, and 772 UCEs, respectively) using concatenated maximum likelihood and multispecies coalescent methods. Our sampling scheme addresses four persistent systematic questions in this group: (1) Are Luperosaurus and Ptychozoon monophyletic, and are any of these named species truly nested within Gekko? (2) Are prior phylogenetic estimates of Sulawesi's L. iskandari as the sister taxon to Melanesian G. vittatus supported by our genome-scale dataset? (3) Is the high-elevation L. gulat of Palawan Island correctly placed within Gekko? (4) And, finally, where do the enigmatic taxa P. rhacophorus and L. browni fall in a higher-level gekkonid phylogeny? We resolve these issues; confirm with strong support some previously inferred findings (placement of Ptychozoon taxa within Gekko; the sister taxon relationship between L. iskandari and G. vittatus); resolve the systematic position of unplaced taxa (L. gulat, and L. browni); and transfer L. iskandari, L. gulat, L. browni, and all members of the genus Ptychozoon to the genus Gekko. Our unexpected and novel systematic inference of the placement of Ptychozoon rhacophorus suggests that this species is not grouped with Ptychozoon or even Luperosaurus (as previously expected) but may, in fact, be most closely related to several Indochinese species of Gekko. With our resolved and strongly supported phylogeny, we present a new classification emphasizing the most inclusive, original generic name (Gekko) for these ~60 taxa, arranged into seven subgenera.


Assuntos
Lagartos/classificação , Animais , Australásia , Sequência de Bases , Sequência Conservada , Genômica , Indonésia , Lagartos/genética , Filogenia , Análise de Sequência de DNA
7.
J Zoo Wildl Med ; 50(2): 492-497, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31260222

RESUMO

Chytridiomycosis, an infectious disease caused by the fungus Batrachochytrium dendrobatidis (chytrid or Bd), has not been well studied in Oklahoma. This is of particular concern regarding the connection between seasonality and chytrid infection. To further investigate this connection, chytrid prevalence and infection load were quantified within amphibians in central Oklahoma from March to October, across two sites in Oklahoma Co. and two sites in Cleveland Co. The results show a trend between seasonality and chytrid, with spring and fall showing higher prevalence and summer showing lower prevalence, which coincides closely with the preferred chytrid growth temperatures. Additionally, periods of high rainfall in May 2015 are linked to increased chytrid prevalence, as has been suggested by other research. Additionally, species exhibiting high chytrid prevalence follow the results of previous studies: Blanchard's cricket frog (Acris blanchardi), American bullfrog (Rana catesbeiana), and southern leopard frog (Rana sphenocephala).


Assuntos
Anuros/microbiologia , Quitridiomicetos/isolamento & purificação , Animais , Micoses/epidemiologia , Micoses/microbiologia , Oklahoma/epidemiologia , Prevalência , Estações do Ano , Tempo (Meteorologia)
8.
Proc Biol Sci ; 285(1871)2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29343593

RESUMO

Regions with complex geological histories often have diverse and highly endemic biotas, yet inferring the ecological and historical processes shaping this relationship remains challenging. Here, in the context of the taxon cycle model of insular community assembly, we investigate patterns of lineage diversity and habitat usage in a newly characterized vertebrate radiation centred upon the world's most geologically complex insular region: island arcs spanning from the Philippines to Fiji. On island arcs taxa are ecologically widespread, and provide evidence to support one key prediction of the taxon cycle, specifically that interior habitats (lowland rainforests, montane habitats) are home to a greater number of older or relictual lineages than are peripheral habitats (coastal and open forests). On continental fringes, however, the clade shows a disjunct distribution away from lowland rainforest, occurring in coastal, open or montane habitats. These results are consistent with a role for biotic interactions in shaping disjunct distributions (a central tenant of the taxon cycle), but we find this pattern most strongly on continental fringes not islands. Our results also suggest that peripheral habitats on islands, and especially island arcs, may be important for persistence and diversification, not just dispersal and colonization. Finally, new phylogenetic evidence for subaerial island archipelagos (with an associated biota) east of present-day Wallace's Line since the Oligocene has important implications for understanding long-term biotic interchange and assembly across Asia and Australia.


Assuntos
Evolução Biológica , Ecossistema , Lagartos , Animais , Biota , Melanesia , Filipinas , Filogenia
9.
Mol Phylogenet Evol ; 127: 280-287, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29870857

RESUMO

The aridification of Africa resulted in the fragmentation of forests and the expansion of an arid corridor stretching from the northeast to southwest portion of sub-Saharan Africa, but the role this corridor has had in species-level diversification of southern African vertebrates is poorly understood. The skink species Mochlus afer and M. sundevallii inhabit wide areas of the arid corridor and are therefore an ideal species pair for studying patterns of genetic and phenotypic diversity associated with this landscape. However, species boundaries between these taxa have been controversial. Using multi-locus molecular and morphological datasets, we investigate diversification patterns of the M. afer-sundevallii Species Complex across the arid corridor. Although analyses of genetic data reveals some genetic structure among geographic populations, results of phylogenetic and morphological analyses provide little support for two distinct evolutionary lineages, suggesting that populations previously referred to as M. afer and M. sundevallii represent a single species, Mochlus sundevallii. Genetic diversity is unequally distributed across the arid corridor, with observed patterns consistent with aridification-facilitated diversification southward across southern Africa. Additional geographic and population-level sampling is necessary before more conclusive inferences can be drawn about the role historical climate transitions have played in skink diversification patterns across southern Africa.


Assuntos
Clima Desértico , Lagartos/anatomia & histologia , Lagartos/classificação , Filogenia , África Subsaariana , Animais , Genética Populacional , Geografia , Lagartos/genética , Alinhamento de Sequência
10.
J Aquat Anim Health ; 30(4): 291-301, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30290015

RESUMO

Global amphibian decline continues to be a great concern despite our increased understanding of the causes behind the observed patterns of the decline, such as habitat modification and infectious diseases. Although there is a large body of literature on the topic of amphibian infectious diseases, pathogen prevalence and distribution among entire communities of species in many regions remain poorly understood. In addition to these geographic gaps in our understanding, past work has focused largely on individual pathogens, either Batrachochytrium dendrobatidis (Bd) or ranavirus (RV), rather than dual infection rates among host species. We sampled for prevalence and infection load of both pathogens in 514 amphibians across 16 total sites in northeastern Oklahoma. Amphibians were caught by hand, net, or seine; they were swabbed to screen for Bd; and liver tissue samples were collected to screen for RV. Overall results of quantitative PCR assays showed that 7% of screened individuals were infected with RV only, 37% were infected with Bd only, and 9% were infected with both pathogens simultaneously. We also documented disease presence in several rare amphibian species that are currently being monitored as species of concern due to their small population sizes in Oklahoma. This study synthesizes a growing body of research regarding infectious diseases among amphibian communities in the central United States.


Assuntos
Anfíbios , Quitridiomicetos/isolamento & purificação , Coinfecção , Infecções por Vírus de DNA/veterinária , Micoses/veterinária , Ranavirus/isolamento & purificação , Animais , Infecções por Vírus de DNA/epidemiologia , Micoses/epidemiologia , Oklahoma/epidemiologia , Prevalência
11.
Mol Phylogenet Evol ; 94(Pt B): 531-536, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26477738

RESUMO

Recent higher-level frog phylogenetic analyses have included a few members of the endemic Philippine frog genus Sanguirana. Although the monophyly of the group has never been disputed, the recent phylogenetically-supported inclusion of the Palawan Wood Frog (Sanguirana sanguinea) in this clade was highly unexpected. In addition, species boundaries and relationships remain unclear and new species continue to be discovered. We estimate the phylogeny for this endemic Philippine genus using two mitochondrial gene regions and six nuclear loci and complete sampling for all known species. We use a time-calibrated Bayesian estimate of phylogeny and model-testing approach to biogeographic inference to infer ancestral areas and probable means of diversification. These analyses identify Sanguirana as an additional clade for which the 'Out-of-Palawan' biogeographic scenario is unambiguously preferred. This study lends additional support to recent work suggesting that a substantial portion of Philippine vertebrate megadiversity originated via colonization of the archipelago from the Palawan microcontinent, with subsequent invasion of oceanic islands (e.g., range expansion over Huxley's Modification of Wallace's Line), numerous instances of overwater dispersal, and geographic radiation across the archipelago.


Assuntos
Anuros/classificação , Animais , Anuros/genética , Teorema de Bayes , Genes Mitocondriais , Ilhas , Filipinas , Filogenia , Ranidae/genética , Análise de Sequência de DNA
13.
Mol Phylogenet Evol ; 74: 29-37, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24486878

RESUMO

We utilize robust geographical genetic sampling, a multilocus dataset, a new synthesis of numerous fossil calibration points, a time-calibrated phylogeny, and the Dispersal-Extinction-Cladogenesis model to test the prediction that widespread Southeast Asian water monitor species initially diversified on the Asian mainland and subsequently invaded the island archipelagos of the Philippines, Sundaland, and Wallacea. Our results strongly contradict these expectations and instead infer an initial water monitor radiation of range-restricted but highly divergent evolutionary lineages (now recognized as endemic species) in one archipelago around 3.6 mya, followed by an out-of-the-Philippines reinvasion of the mainland (2.2 mya), resulting in a few, widespread species that now inhabit most the islands of the Sunda Shelf and the Southeast Asian mainland as far north as Myanmar, as well as an out-of-the-Philippines invasion of Sulawesi (2.1 mya). Our analyses both confirm the importance of island archipelagos as drivers of diversification for mainland biodiversity and emphasize the global evolutionary significance and conservation priority of the Philippines for understanding processes of diversification in island archipelagos.


Assuntos
Fósseis , Lagartos/genética , Filogenia , Animais , Sudeste Asiático , Biodiversidade , Calibragem
14.
Mol Phylogenet Evol ; 72: 35-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24389467

RESUMO

Widespread, co-distributed species with limited relative dispersal abilities represent compelling focal taxa for comparative phylogeography. Forest vertebrates in island archipelagos often exhibit pronounced population structure resulting from limited dispersal abilities or capacity to overcome marine barriers to dispersal. The exceptionally diverse Old World tree frogs of the family Rhacophoridae have colonized the forested island archipelagos of Southeast Asia on multiple occasions, entering the islands of Indonesia and the Philippines via a "stepping stone" mode of dispersal along elongate island chains, separated by a series of marine channels. Here we evaluate the prediction that two tightly co-distributed Philippine rhacophorids colonized the archipelago during concomitant timescales and in the same, linear, "island-hopping" progression. We use a new multilocus dataset, utilize dense genetic sampling from the eastern arc of the Philippines, and we take a model-based phylogeographic approach to examining the two species for similar topological patterns of diversification, genetic structure, and timescales of diversification. Our results support some common mechanistic predictions (a general south-to-north polarity of colonization) but not others (timescale for colonization and manner and degree of lineage diversification), suggesting differing biogeographic scenarios of geographical diffusion through the archipelago and unique and idiosyncratic ecological capacities and evolutionary histories of each species.


Assuntos
Anuros/genética , Animais , Ecossistema , Filipinas , Filogenia , Filogeografia , Análise de Sequência de DNA
15.
Mol Phylogenet Evol ; 70: 204-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24075982

RESUMO

Recent studies of forest lizards in Southeast Asia have highlighted spectacular morphological and cryptic genetic diversity in several poorly known clades. Unfortunately, many of the included species have microhabitat preferences for forested environments, and therefore they are threatened by extensive forest destruction throughout the region. This is particularly true in the Philippines, an archipelago with a strikingly high proportion (84%) of endemic geckos. Abundances inferred from historical museum collections suggests that we are in a critical period where apparent declines in population viability and species' abundance have taken place faster than the growth in our understanding of alpha diversity. This phenomenon is exemplified in the exceedingly rare Philippine slender forest geckos of the genus Pseudogekko. Most of the known species are rarely encountered by field biologists, and species boundaries are unclear; this poor state of knowledge impedes effective conservation measures. Using the first multilocus phylogeny for these taxa, and phylogenetic and population genetic approaches, we elucidate evolutionary lineages and delimit species-level conservation targets in this unique radiation of endemic Philippine geckos. The results support the presence of widespread cryptic diversity in the genus, providing a framework for the re-evaluation of conservation priorities aimed at protecting these rare, forest-obligate species.


Assuntos
Lagartos/genética , Filogenia , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Variação Genética , Genética Populacional , Lagartos/classificação , Filipinas , Análise de Sequência de DNA , Árvores
16.
Ecol Evol ; 14(3): e10856, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487748

RESUMO

Nonnative species are a key agent of global change. However, nonnative invertebrates remain understudied at the community scales where they are most likely to drive local extirpations. We use the North American NEON pitfall trapping network to document the number of nonnative species from 51 invertebrate communities, testing four classes of drivers. We sequenced samples using the eDNA from the sample's storage ethanol. We used AICc informed regression to evaluate how native species richness, productivity, habitat, temperature, and human population density and vehicular traffic account for continent-wide variation in the number of nonnative species in a local community. The percentage of nonnatives varied 3-fold among habitat types and over 10-fold (0%-14%) overall. We found evidence for two types of constraints on nonnative diversity. Consistent with Capacity rules (i.e., how the number of niches and individuals reflect the number of species an ecosystem can support) nonnatives increased with existing native species richness and ecosystem productivity. Consistent with Establishment Rules (i.e., how the dispersal rate of nonnative propagules and the number of open sites limits nonnative species richness) nonnatives increased with automobile traffic-a measure of human-generated propagule pressure-and were twice as common in pastures than native grasslands. After accounting for drivers associated with a community's ability to support native species (native species richness and productivity), nonnatives are more common in communities that are regularly seasonally disturbed (pastures and, potentially deciduous forests) and those experiencing more vehicular traffic. These baseline values across the US North America will allow NEON's monitoring mission to document how anthropogenic change-from disturbance to propagule transport, from temperature to trends in local extinction-further shape biotic homogenization.

17.
Mol Ecol ; 22(19): 4972-87, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24010862

RESUMO

In theory, competition among species in a shared habitat results in niche separation. In the case of small recondite mammals such as shrews, little is known about their autecologies, leaving open questions regarding the degree to which closely related species co-occur and how or whether ecological niches are partitioned. The extent to which species are able to coexist may depend on the degree to which they exploit different features of their habitat, which may in turn influence our ability to recognize them as species. We explored these issues in a biodiversity hotspot, by surveying shrew (genus Crocidura) diversity on the Indonesian island of Java. We sequenced portions of nine unlinked genes in 100-117 specimens of Javan shrews and incorporated homologous data from most known Crocidura species from other parts of island South-East Asia. Current taxonomy recognizes four Crocidura species on Java, including two endemics. However, our phylogenetic, population genetic and species delimitation analyses identify five species on the island, and all are endemic to Java. While the individual ranges of these species may not overlap in their entirety, we found up to four species living syntopically and all five species co-occurring on one mountain. Differences in species' body size, use of above ground-level habitats by one species and habitat partitioning along ecological gradients may have facilitated species diversification and coexistence.


Assuntos
Ecossistema , Especiação Genética , Filogenia , Musaranhos/classificação , Alelos , Animais , Biodiversidade , Loci Gênicos , Genética Populacional , Geografia , Indonésia , Ilhas , Dados de Sequência Molecular , Musaranhos/genética
18.
Ecology ; 104(1): e3855, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36054605

RESUMO

Activity density (AD), the rate at which animals collectively move through their environment, emerges as the product of a taxon's local abundance and its velocity. We analyze drivers of seasonal AD using 47 localities from the National Ecological Observatory Network (NEON) both to better understand variation in ecosystem rates like pollination and seed dispersal as well as the constraints of using AD to monitor invertebrate populations. AD was measured as volume from biweekly pitfall trap arrays (ml trap-1 14 days-1 ). Pooled samples from 2017 to 2018 revealed AD extrema at most temperatures but with a strongly positive overall slope. However, habitat types varied widely in AD's seasonal temperature sensitivity, from negative in wetlands to positive in mixed forest, grassland, and shrub habitats. The temperature of maximum AD varied threefold across the 47 localities; it tracked the threefold geographic variation in maximum growing season temperature with a consistent gap of ca. 3°C across habitats, a novel macroecological result. AD holds potential as an effective proxy for investigating ecosystem rates driven by activity. However, our results suggest that its use for monitoring insect abundance is complicated by the many ways that both abundance and velocity are constrained by a locality's temperature and plant physiognomy.


Assuntos
Ecossistema , Florestas , Animais , Temperatura , Estações do Ano , Áreas Alagadas
19.
Parasit Vectors ; 16(1): 424, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974288

RESUMO

BACKGROUND: Mosquitoes are the deadliest organisms in the world, killing an estimated 750,000 people per year due to the pathogens they can transmit. Mosquitoes also pose a major threat to other vertebrate animals. Culex territans is a mosquito species found in temperate zones worldwide that feeds almost exclusively on amphibians and can transmit parasites; however, little is known about its ability to transmit other pathogens, including fungi. Batrachochytrium dendrobatidis (Bd) is a topical pathogenic fungus that spreads through contact. With amphibian populations around the world experiencing mass die-offs and extinctions due to this pathogen, it is critical to study all potential modes of transmission. Because Cx. territans mosquitoes are in contact with their hosts for long periods of time while blood-feeding, we hypothesize that they can transmit and pick up Bd. METHODS: In this study, we first assessed Cx. territans ability to transfer the fungus from an infected surface to a clean one under laboratory conditions. We also conducted a surveillance study of Bd infections in frogs and mosquitoes in the field (Mountain Lake Biological station, VA, USA). In parallel, we determined Cx. territans host preference via blood meal analysis of field caught mosquitoes. RESULTS: We found that this mosquito species can carry the fungus to an uninfected surface, implying that they may have the ability to transmit Bd to their amphibian hosts. We also found that Cx. territans feed primarily on green frogs (Rana clamitans) and bullfrogs (Rana catesbeiana) and that the prevalence of Bd within the frog population at our field site varied between years. CONCLUSIONS: This study provides critical insights into understanding the role of amphibian-biting mosquitoes in transmitting pathogens, which can be applied to disease ecology of susceptible amphibian populations worldwide.


Assuntos
Culex , Culicidae , Humanos , Animais , Culex/parasitologia , Batrachochytrium , Anuros
20.
Mol Phylogenet Evol ; 63(3): 915-21, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22425705

RESUMO

Some of Southeast Asia's most poorly known vertebrates include forest lizards that are rarely seen by field biologists. Arguably the most enigmatic of forest lizards from the Indo Australian archipelago are the Flap-legged geckos and the Flying geckos of the genera Luperosaurus and Ptychozoon. As new species have accumulated, several have been noted for their bizarre combination of morphological characteristics, seemingly intermediate between these genera and the pan-Asian gecko genus Gekko. We used the first multilocus phylogeny for these taxa to estimate their relationships, with particular attention to the phylogenetic placement of the morphologically intermediate taxa Ptychozoon rhacophorus, Luperosaurus iskandari, and L. gulat. Surprisingly, our results demonstrate that Luperosaurus is more closely related to Lepidodactylus and Pseudogekko than it is to Gekko but that some species currently classified as Luperosaurus are nested within Gekko. The Flying Gecko genus Ptychozoon is also nested within Gekko, suggesting that higher-level taxonomic revision of the generic boundaries within Southeast Asian gekkonines will be a priority for the immediate future.


Assuntos
Lagartos/genética , Filogenia , Animais , Ásia , Evolução Molecular , Lagartos/anatomia & histologia , Lagartos/classificação , Modelos Genéticos , Tipagem de Sequências Multilocus , Fenótipo , Proteínas de Répteis/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA