Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 235: 116673, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454796

RESUMO

We quantified the occurrences and seasonal variations of the target endocrine disrupting chemicals (EDCs) at four (two major municipals, and two academic institutions) WWTPs in Dehradun city, Uttarakhand, India. The results showed estrone in higher concentrations at µgL-1 levels in influent among the WWTPs, compared to triclosan (TCS) at ngL-1 levels. An astounding concentration of 123.95 µgL-1 was recorded for the estrone in the influent, which is to date the highest ever recorded, globally. Statistical data treatment was performed to test the distribution of the data (Shapiro-Wilk, Anderson-Darling, Lilliefors, and Jarque-Bera tests), and the significant difference between the mean of the wastewater sample population (ANOVA: F statistics, p values, Mann-Whitney test, Tukey's and Dunn's post hoc analysis). Statistical data treatment indicated EDCs concentration with a bi-modal distribution. The Shapiro-Wilk, Anderson-Darling, Lilliefors, and Jarque-Bera tests elucidate a non-normal distribution for the EDCs sample data. A statistically significant difference (F = 8.46; p < 0.0001) in the seasonal data for the abundance of the target EDCs at the WWTPs have been observed. Highest and significantly different mean EDCs concentrations were recorded during the monsoon, compared to the spring (p = 0.025) and summer (p = 0.0004) seasons in the influent waters. The mean influent concentrations of TCS and estrone in monsoon were 66.45 ngL-1 and 78.02 µgL-1, respectively. Maximum removals were recorded for TCS, while maximum negative removal of ∼293% was observed for estrone in the WWTPs. Particularly, the high levels of estrone in the wastewater pose a significant threat as estrone presence could be led to feminization, dysregulation of reproduction in organisms, and carcinogenesis processes in the environment. This study critically highlights the limitation of the WWTPs in the treatment, degradation, and assimilation of EDCs leading to their hyperaccumulation at WWTP effluents, thereby posing a substantial threat to nearby aquatic ecosystems, human health, and the ecological balance of the region.


Assuntos
Disruptores Endócrinos , Triclosan , Poluentes Químicos da Água , Purificação da Água , Humanos , Estrona/análise , Águas Residuárias , Disruptores Endócrinos/análise , Eliminação de Resíduos Líquidos/métodos , Prevalência , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Índia
2.
J Environ Manage ; 335: 117494, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871357

RESUMO

We present the use of root zone treatment (RZT) based system for the removal of pharmaceutical and personal care products (PPCPs) from domestic wastewater. The occurrence of more than a dozen PPCPs were detected in an academic institution wastewater treatment plant (WWTP) at three specific locations, i.e., influent, root treatment zone, and effluents. The comparisons of observed compounds detected at various stages of WWTP suggest that the presence of PPCPs, like homatropine, cytisine, carbenoxolone, 4,2',4',6'-tetrahydroxychalcone, norpromazine, norethynodrel, fexofenadine, indinavir, dextroamphetamine, 3-hydroxymorphinan, phytosphingosine, octadecanedioic acid, meradimate, 1-hexadecanoyl-sn-glycerol, and 1-hexadecylamine, are unusual than the usual reported PPCPs in the WWTPs. In general, carbamazepine, ibuprofen, acetaminophen, trimethoprim, sulfamethoxazole, caffeine, triclocarban, and triclosan are often reported in wastewater systems. The normalized abundances of PPCPs range between 0.037-0.012, 0.108-0.009, and 0.208-0.005 in main influent, root zone effluent, and main effluents, respectively, of the WWTP. In addition, the removal rates of PPCPs were observed from -200.75% to ∼100% at RZT phase in the plant. Interestingly, we observed several PPCPs at later stages of treatment which were not detected in the influent of the WWTP. This is probably owing to the presence of conjugated metabolites of various PPCPs present in the influent, which subsequently got deconjugated to reform the parent compounds during the biological wastewater treatment. In addition, we suspect the potential release of earlier absorbed PPCPs in the system, which were absent on that particular day of sampling but have been part of earlier influents. In essence, RZT-based WWTP was found to be effective in removing the PPCPs and other organic contaminants in the study but results in stress the need for further comprehensive research on RZT system to conclude the exact removal efficacy and fate of PPCPs during treatment in the system. As a current research gap, the study also recommended RZT to be appraised for PPCPs in-situ remediation from landfill leachates, an underestimated source of PPCPs intrusion in the environment.


Assuntos
Cosméticos , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Eliminação de Resíduos Líquidos , Monitoramento Ambiental/métodos , Cosméticos/análise , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Preparações Farmacêuticas
3.
J Environ Manage ; 320: 115703, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932733

RESUMO

The global production of PPCPs have increased by multiple folds promoting excessive exposure of its metabolites to humans via different aquatic systems. The higher residence time of toxic precursors of these metabolites pose direct human health risk. Among the different aquatic systems, the contamination of groundwater by PPCPs is the most concerning threat. This threat is especially critical considering the lesser oxidizing potential of the groundwater as compared to freshwater/river water. A major challenge also arises due to excessive dependency of the world's population on groundwater, which is exponentially increasing with time. This makes the identification and characterization of spatial contamination hotspots highly probabilistic as compared to other freshwater systems. The situation is more vulnerable in developing countries where there is a reported inadequacy of wastewater treatment facilities, thereby forcing the groundwater to behave as the only available sequestrating sink for all these contaminants. With increased consumption of antibiotics and other pharmaceuticals compounds, these wastes have proven capability in terms of enhancing the resistance among the biotic community of the soil systems, which ultimately can become catastrophic and carcinogenic in near future. Recent studies are supporting the aforementioned concern where compounds like diclofenac (analgesic) have attained a concentration of 1.3 mgL-1 in the aquifer systems of Delhi, India. The situation is far worse for developed nations where prolonged and indiscriminate usage of antidepressants and antibiotics have life threating consequences. It has been confirmed that certain compounds like ofloxacin (antibiotics) and bis-(2-ethylhexyl)phthalate are present in some of the most sensitive wells/springs of the United States and Mexico. The current trend of the situation has been demonstrated by integrating a comparative approach of the published literatures in last three years. This review provides first-hand information report for formulating a directive policy framework for tackling PPCPs issues in the groundwater system.


Assuntos
Cosméticos , Água Subterrânea , Poluentes Químicos da Água , Antibacterianos , Cosméticos/análise , Monitoramento Ambiental , Humanos , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
4.
Environ Pollut ; 320: 120978, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586556

RESUMO

Microplastics (MPs) are non-biodegradable substances that can sustain our environment for up to a century. What is more worrying is the incapability of modern technologies to annihilate MPs from om environment. One ramification of MPs is their impact on every kind of life form on this planet, which has been discussed ahead; that is why these substances are surfacing in everyday discussions of scholars and researchers. This paper discusses the overview of the global occurrence, abundance, analysis, and remediation techniques of MPs in the environment. This paper primarily reviews the event and abundance of MPs in coastal sediments and agricultural soil of three major Asian countries, India, China, and Japan. A significant concentration of MPs has been recorded from these countries, which affirms its strong presence and subsequent environmental impacts. Concentrations such as 73,100 MPs/kg in Indian coastal sediments and 42,960 particles/kg in the agricultural soil of China is a solid testimony to prove their massive outbreak in our environment and require urgent attention towards this issue. Conclusions show that human activities, rivers, and plastic mulching on agricultural fields have majorly acted as carriers of MPs towards coastal and terrestrial soil and sediments. Later, based on recorded concentrations and gaps, future research studies are recommended in the concerned domain; a dearth of studies on MPs influencing Indian agricultural soil make a whole sector and its consumer vulnerable to the adverse effects of this emerging contaminant.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/análise , Plásticos/análise , Solo , Japão , China , Índia , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
5.
Bioresour Technol ; 387: 129537, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37488012

RESUMO

We produced carbon-negative biochar from the pyrolysis of sawdust biomass alone (SB) and from the co-pyrolysis of sawdust and plastic waste (SPB). The co-pyrolysis approach in this study was driven by several hypothetical factors, such as increased porosity, surface chemistry, stability, as well as waste management. We applied pyrolyzed and co-pyrolyzed biochars for the removal of ciprofloxacin (CFX) and sulfamethoxazole (SMX). Due to its more alkaline and amorphous nature, SB showed better removal efficiencies compared to SPB. The maximum removals of CFX and SMX with SB were observed as ∼95% and >95%, respectively whereas with SPB were 58.8%, and 34.9%, respectively. The primary mechanisms involved in the adsorption process were H-bonding, electrostatic and π-π electron donor-acceptor interactions. Homogenously and heterogeneously driven adsorption of both antibiotics followed the pseudo-second-order kinetic model, implying electron sharing/transfer (chemisorption) mediated adsorption. The work is highly pertinent in the context of emerging concerns related to drivers that promote antimicrobial resistance.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Sulfametoxazol , Adsorção , Plásticos , Carvão Vegetal , Resistência Microbiana a Medicamentos , Poluentes Químicos da Água/análise , Cinética
6.
Sci Total Environ ; 904: 166419, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37625721

RESUMO

The COVID-19 (coronavirus disease 2019) pandemic's steady condition coupled with predominance of emerging contaminants in the environment and its synergistic implications in recent times has stoked interest in combating medical emergencies in this dynamic environment. In this context, high concentrations of pharmaceutical and personal care products (PPCPs), microplastics (MPs), antimicrobial resistance (AMR), and soaring coinfecting microbes, tied with potential endocrine disruptive (ED) are critical environmental concerns that requires a detailed documentation and analysis. During the pandemic, the identification, enumeration, and assessment of potential hazards of PPCPs and MPs and (used as anti-COVID-19 agents/applications) in aquatic habitats have been attempted globally. Albeit receding threats in the magnitude of COVID-19 infections, both these pollutants have still posed serious consequences to aquatic ecosystems and the very health and hygiene of the population in the vicinity. The surge in the contaminants post-COVID also renders them to be potent vectors to harbor and amplify AMR. Pertinently, the present work attempts to critically review such instances to understand the underlying mechanism, interactions swaying the current health of our environment during this post-COVID-19 era. During this juncture, although prevention of diseases, patient care, and self-hygiene have taken precedence, nevertheless antimicrobial stewardship (AMS) efforts have been overlooked. Unnecessary usage of PPCPs and plastics during the pandemic has resulted in increased emerging contaminants (i.e., active pharmaceutical ingredients and MPs) in various environmental matrices. It was also noticed that among COVID-19 patients, while the bacterial co-infection prevalence was 0.2-51%, the fungi, viral, protozoan and helminth were 0.3-49, 1-22, 2-15, 0.4-15% respectively, rendering them resistant to residual PPCPs. There are inevitable chances of ED effects from PPCPs and MPs applied previously, that could pose far-reaching health concerns. Furthermore, clinical and other experimental evidence for many newer compounds is very scarce and demands further research. Pro-active measures targeting effective waste management, evolved environmental policies aiding strict regulatory measures, and scientific research would be crucial in minimizing the impact and creating better preparedness towards such events among the masses fostering sustainability.


Assuntos
COVID-19 , Cosméticos , Poluentes Químicos da Água , Humanos , Ecossistema , Microplásticos , Plásticos , Antibacterianos/análise , Monitoramento Ambiental/métodos , Prevalência , Poluentes Químicos da Água/análise , Farmacorresistência Bacteriana , Cosméticos/análise , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA