Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 56(S1): 1-23, 2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-34998002

RESUMO

BACKGROUND/AIMS: Oxidative Stress (OS) is reported as one of the main causes of male infertility. Infertile couples often resort to assisted reproductive technology (ART) to achieve parenthood. However, preparation for ART protocols increases the exposer of gametes to OS. Thus, it is crucial to find suitable preservation media that can counteract the OS-induced damages in spermatozoa. In this work, we tested and compared the efficiency of vitamin C (VC) and hyperoside (HYP) as potential antioxidant supplements for sperm preservation media. METHODS: We evaluated the cytotoxicity of HYP (0, 5, 50, 100, and 500 µM) in spermatozoa. After incubation of sperm cells with VC (600 µM) and HYP (100 and 500 µM), in the presence and absence of H2O2 (300 µM), the following parameters were assessed: total sperm motility and vitality, OS biomarkers expression, total antioxidant capacity (TAC) of the media, percentage of DNA fragmentation, mitochondrial membrane potential (MMP), and metabolite quantification of the media by proton nuclear magnetic resonance (1H-NMR). RESULTS: The supplementation with VC (600 µM) and HYP (100 and 500 µM) did not induce any deleterious effects to the physiology and metabolism of the spermatozoa, after 1-hour of treatment. In the presence of H2O2 (300 µM), both VC and HYP were able to prevent some of the deleterious effects of H2O2 in sperm, which were represented by an increase in sperm motility, a decrease in DNA fragmentation, and a decreasing trend in lipid peroxidation levels. However, these antioxidants were not able to prevent the decrease of MMP associated with H2O2 treatment, nor were able to prevent the conversion of pyruvate into acetate (a reaction promoted by H2O2). CONCLUSION: The supplementation of sperm preservation media with VC and HYP could be beneficial for the preservation of sperm physiology. From the antioxidant conditions tested, the supplementation of media with HYP (100 µM) demonstrated the best results regarding sperm preservation, evidencing the higher antioxidant capacity of HYP compared to VC. Nevertheless, none of the antioxidants used was able to prevent the metabolic alterations promoted by H2O2 in spermatozoa.


Assuntos
Ácido Ascórbico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Quercetina/análogos & derivados , Preservação do Sêmen , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Adulto , Humanos , Masculino , Quercetina/farmacologia
2.
Adv Exp Med Biol ; 1391: 259-274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36472827

RESUMO

The decline of fertility in modern society is a serious worldwide concern, and the reasons behind it are complex and difficult to unveil. The fact that a big percentage of infertility cases remain diagnosed as idiopathic, turn the strategies to treat such conditions very limited. Nevertheless, one must agree that keeping the oxidative balance of the reproductive tissues should be one of the first lines of treatment for infertile patients. As reported, 30-80% of male infertile individuals present high levels of prooxidant species in the seminal fluid. Thus, antioxidant therapies, which consist of dietary supplementation therapy with one or more antioxidant compound, remain the first step in the treatment of male infertility. Nevertheless, the efficacy of such therapies is variable between individuals. The most common prescribed antioxidants are carnitines and vitamins C and E, but recently phytochemical quercetin has emerged as a potential compound for the treatment of oxidative stress in the male reproductive system. Although there are several animals' evidence about the great potential of quercetin for the treatment of infertility, clinical trials on this subject remain scarce.


Assuntos
Antioxidantes , Quercetina , Masculino , Animais , Antioxidantes/uso terapêutico , Quercetina/uso terapêutico , Estresse Oxidativo , Genitália Masculina
3.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328463

RESUMO

The permanent exposure to environmental contaminants promoting weight gain (i.e., obesogens) has raised serious health concerns. Evidence suggests that obesogens are one of the leading causes of the marked decline in male fertility and are key players in shaping future health outcomes, not only for those who are directly exposed to them, but also for upcoming generations. It has been hypothesized that obesogens affect male fertility. By using an interdisciplinary strategy, combining in silico, in vitro, in vivo and epidemiological findings, this review aims to contribute to the biological understanding of the molecular transformations induced by obesogens that are the basis of male infertility. Such understanding is shaped by the use of Adverse Outcomes Pathways, a new approach that may shift the paradigm of reproductive toxicology, contributing to the improvement of the diagnosis and management of the adverse effects of obesogens in male fertility.


Assuntos
Disruptores Endócrinos , Infertilidade Masculina , Disruptores Endócrinos/toxicidade , Humanos , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/complicações , Masculino , Obesidade/induzido quimicamente , Reprodução
4.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012191

RESUMO

Diabetes mellitus type 2 (T2DM) has been associated with alterations in the male reproductive tract, especially in the epididymis. Although it is known that T2DM alters epididymal physiology, disturbing mitochondrial function and favoring oxidative stress, the mechanisms remain unknown. Sirtuin 1 (SIRT1), peroxisome proliferators-activated receptor γ coactivator 1α (PGC-1α), and sirtuin 3 (SIRT3) are key regulators of mitochondrial function and inducers of antioxidant defenses. In this study, we hypothesized that the epididymal SIRT1/PGC-1α/SIRT3 axis mediates T2DM-induced epididymis dysfunction by controlling the oxidative profile. Using 7 Goto-Kakizaki (GK) rats (a non-obese model that spontaneously develops T2DM early in life), and 7 age-matched Wistar control rats, we evaluated the protein levels of SIRT1, PGC-1α, and SIRT3, as well as the expression of mitochondrial respiratory complexes. The activities of epididymal glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) were determined, as well as the epididymal antioxidant capacity. We also evaluated protein nitration, carbonylation, and lipid peroxidation in the epididymis. The T2DM rats presented with hyperglycemia and glucose intolerance. Epididymal levels of SIRT1, PGC-1α, and SIRT3 were decreased, as well as the expression of the mitochondrial complexes II, III, and V, in the T2DM rats. We found a significant decrease in the activities of SOD, CAT, and GPx, consistent with the lower antioxidant capacity and higher protein nitration and lipid peroxidation detected in the epididymis of the T2DM rats. In sum, T2DM disrupted the epididymal SIRT1/PGC-1α/SIRT3 pathway, which is associated with a compromised mitochondrial function. This resulted in a decline of the antioxidant defenses and an increased oxidative damage in that tissue, which may be responsible for the impaired male reproductive function observed in diabetic men.


Assuntos
Diabetes Mellitus Tipo 2 , Sirtuína 3 , Animais , Antioxidantes/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Epididimo/metabolismo , Humanos , Masculino , Estresse Oxidativo/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Wistar , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo , Superóxido Dismutase/metabolismo
5.
Molecules ; 26(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202230

RESUMO

Prediabetes (PrDM) is a prodromal stage of diabetes mellitus (DM) with an increasing prevalence worldwide. During DM progression, individuals gradually develop complications in various organs. However, lungs are suggested to be affected later than other organs, such as the eyes, heart or brain. In this work, we studied the effects of PrDM on male Wistar rats' lungs and whether the regular consumption of white tea (WTEA) for 2 months contributes to the improvement of the antioxidant profile of this tissue, namely through improved activity of the first line defense antioxidant enzymes, the total antioxidant capacity and the damages caused in proteins, lipids and histone H2A. Our data shows that PrDM induced a decrease in lung superoxide dismutase and glutathione peroxidase activities and histone H2A levels and an increase in protein nitration and lipid peroxidation. Remarkably, the regular WTEA intake improved lung antioxidant enzymes activity and total antioxidant capacity and re-established the values of protein nitration, lipid peroxidation and histone H2A. Overall, this is the first time that lung is reported as a major target for PrDM. Moreover, it is also the first report showing that WTEA possesses relevant chemical properties against PrDM-induced lung dysfunction.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Pulmão/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Estado Pré-Diabético/metabolismo , Chá/química , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Glutationa Peroxidase/metabolismo , Histonas/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Extratos Vegetais/química , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
6.
Toxicol Appl Pharmacol ; 362: 1-8, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30296456

RESUMO

Obesity incidence has pandemic proportions and is expected to increase even further. Glucagon-like peptide-1 (GLP-1) based therapies are well-established pharmacological resources for obesity treatment. GLP-1 regulates energy and glucose homeostasis, which are also crucial for spermatogenesis. Herein, we studied the GLP-1 effects in human Sertoli cells (hSCs) metabolism and mitochondrial function. hSCs were cultured in absence or exposed to increasing doses of GLP-1 mimicking physiological post-prandial (0.01 nM) levels or equivalent to pharmacological levels (1 and 100 nM) used for obesity treatment. We identified GLP-1 receptor in hSCs. Consumption/production of extracellular metabolites were assessed, as well as protein levels or activities of glycolysis-related enzymes and transporters. Mitochondrial membrane potential and oxidative damage were evaluated. Glucose consumption decreased, while lactate production increased in hSCs exposed to 0.01 and 1 nM GLP-1. Though lactate dehydrogenase (LDH) protein decreased after exposure to 100 nM GLP-1 its activity increased in hSCs exposed to the same concentration of GLP-1. Mitochondrial membrane potential decreased in hSCs exposed to 100 nM of GLP-1, while formation of carbonyl groups was decreased in those cells. Those effects were followed by an increase in p-mammalian target of rapamycin (mTOR) Ser(2448). Overall, the lowest concentrations of GLP-1 increased the efficiency of glucose conversion to lactate, while GLP-1 concentration of 100 nM induces mTOR phosphorylation, decreases mitochondrial membrane potential and oxidative damage. GLP-1 regulates testicular energy homeostasis and pharmacological use of GLP-1 analogues could be valuable to counteract the negative impact of obesity in male reproductive function.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/farmacologia , Células de Sertoli/efeitos dos fármacos , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/fisiologia , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células de Sertoli/fisiologia
7.
Reproduction ; 158(4): 377-387, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31437815

RESUMO

In recent decades, the prevalence of metabolic diseases has concomitantly increased with a decline on fertility rates and sperm quality. High-fat diets (HFD) are seldom considered part of the problem, but the molecular mechanisms underlying its effects on male fertility remain poorly understood. Herein we postulated that HFD alter sperm quality. We evaluated the effects of switching from a HFD to a normal diet in early adulthood on metabolic disease onset, testicular metabolism and sperm quality. Thirty-six male C57BL6/J mice were divided in: a control group fed with standard chow; a group fed with HFD for 200 days; and a group fed with HFD for 60 days and then with standard chow (HFDt). Biometric data and whole-body metabolism were assessed. Epididymal sperm was studied for concentration, motility, viability and morphology. 1H-NMR metabolomics approach was performed on testicular extracts to trace the metabolic changes. Diet switch reduced body weight and fat mass, preventing metabolic syndrome onset. However, sperm viability, motility and morphology were deteriorated by HFD consumption and not restored by diet switch. HFD induced irreversible changes in pyruvate and glutamate metabolism, ethanol degradation and ammonia recycling in testis. Furthermore, HFDt changed purine and cysteine metabolism, urea cycle, and glutathione content. Overall, HFD caused irreversible changes in testicular metabolism even after switching to normal diet. HFD feeding until early adulthood decreases sperm quality, which cannot be restored by diet switch or weight loss, even when development of metabolic syndrome is avoided.


Assuntos
Dieta Saudável , Dieta Hiperlipídica/efeitos adversos , Síndrome Metabólica/prevenção & controle , Obesidade/complicações , Motilidade dos Espermatozoides , Espermatozoides/fisiologia , Testículo/metabolismo , Animais , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/patologia , Camundongos , Camundongos Endogâmicos C57BL
8.
Crit Rev Food Sci Nutr ; 59(16): 2597-2625, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29624433

RESUMO

Methylated xanthines (methylxanthines) are available from a significant number of different botanical species. They are ordinarily included in daily diet, in many extremely common beverages and foods. Caffeine, theophylline and theobromine are the main methylxanthines available from natural sources. The supposedly relatively low toxicity of methylxanthines, combined with the many beneficial effects that have been attributed to these compounds through time, generated a justified attention and a very prolific ground for dedicated scientific reports. Methylxanthines have been widely used as therapeutical tools, in an intriguing range of medicinal scopes. In fact, methylxanthines have been/were medically used as Central Nervous System stimulants, bronchodilators, coronary dilators, diuretics and anti-cancer adjuvant treatments. Other than these applications, methylxanthines have also been hinted to hold other beneficial health effects, namely regarding neurodegenerative diseases, cardioprotection, diabetes and fertility. However, it seems now consensual that toxicity concerns related to methylxanthine consumption and/or therapeutic use should not be dismissed. Taking all the knowledge and expectations on the potential of methylxanthines into account, we propose a systematic look at the past and future of methylxanthine pharmacologic applications, discussing all the promise and anticipating possible constraints. Anyways, methylxanthines will still substantiate considerable meaningful research and discussion for years to come.


Assuntos
Xantinas/história , Xantinas/uso terapêutico , História do Século XX , História do Século XXI , Humanos , Estudos Retrospectivos , Xantinas/química
9.
Eur J Nutr ; 58(7): 2961-2970, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31183510

RESUMO

PURPOSE: L-Theanine is the major free amino acid present in tea (Camellia sinensis L.). The effects of several tea constituents on male reproduction have been investigated, but L-theanine has been overlooked. Sertoli cells (SCs) are essential for the physical and nutritional support of germ cells. In this study, we aimed to investigate the ability of L-theanine to modulate important mechanisms of human SCs (hSCs) metabolism, mitochondrial function and oxidative profile, which are essential to prevent or counteract spermatogenesis disruption in several health conditions. METHODS: We evaluated the effect of a dose of L-theanine attained by tea intake (5 µM) or a pharmacological dose (50 µM) on the metabolism (proton nuclear magnetic resonance and Western blot), mitochondrial functionality (protein expression of mitochondrial complexes and JC1 ratio) and oxidative profile (carbonyl levels, nitration and lipid peroxidation) of cultured hSCs. RESULTS: Exposure of hSCs to 50 µM of L-theanine increased cell proliferation and glucose consumption. In response to this metabolic adaptation, there was an increase in mitochondrial membrane potential, which may compromise the prooxidant-antioxidant balance. Still, no alterations were observed regarding the oxidative damages. CONCLUSIONS: A pharmacological dose of L-theanine (50 µM) prompts an increase in hSCs proliferation and a higher glucose metabolization to sustain the pool of Krebs cycle intermediates, which are crucial for cellular bioenergetics and biosynthesis. This study suggests an interplay between glycolysis and glutaminolysis in the regulation of hSCs metabolism.


Assuntos
Proliferação de Células/efeitos dos fármacos , Glucose/metabolismo , Glutamatos/farmacologia , Glicólise/efeitos dos fármacos , Células de Sertoli/efeitos dos fármacos , Células Cultivadas , Glicólise/fisiologia , Humanos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Células de Sertoli/fisiologia
10.
Reproduction ; 153(6): R173-R185, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28283671

RESUMO

Obesity has grown to pandemic proportions. It affects an increasing number of children, adolescents and young adults exposed to the silent comorbidities of this disorder for a longer period. Infertility has arisen as one important comorbidity associated with the energy dysfunction promoted by obesity. Spermatogenesis is a highly regulated process that is determined by specific energetic requirements. The reproductive potential of males relies on hormonal-dependent and -independent stimuli that control sperm quality. There are conflicting data concerning the impact of male overweight and obesity on sperm quality, as well as on the possible paternal-induced epigenetic trait inheritance of obesity. In addition, it remains a matter of debate whether massive weight loss induced by lifestyle interventions, drugs or bariatric surgery may or may not benefit obese men seeking fatherhood. Herein, we propose to discuss how energy balance may modulate hormonal signalling and sperm quality in overweight and obese men. We also discuss some molecular mechanisms that mediate obesity-related dysfunction in male reproductive system and how paternal obesity may lead to trait inheritance. Finally, we will discuss how lifestyle modifications and sustained weight loss, particularly the loss achieved by bariatric surgery, may revert some of the deleterious effects of obesity in men and their offspring.


Assuntos
Metabolismo Energético , Obesidade/fisiopatologia , Espermatogênese/fisiologia , Humanos , Masculino
11.
Med Mycol ; 55(4): 358-367, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664993

RESUMO

Type 1 diabetes mellitus (T1D) is considered a risk factor associated with oral yeast infections. The aim of this study was to evaluate the yeast oral carriage (in saliva and mucosal surface) of children with T1D and potential relation with host factors, particularly the subset of CD4+ T cells. Yeasts were quantified and identified in stimulated saliva and in cheek mucosal swabs of 133 diabetic T1D and 72 healthy control subjects. Salivary lymphocytes were quantified using flow cytometry. The presence of yeasts in the oral cavity (60% of total patients) was not affected by diabetes, metabolic control, duration of the disease, salivary flow rate or saliva buffer capacity, by age, sex, place of residence, number of daily meals, consumption of sweets or frequency of tooth brushing. Candida albicans was the most prevalent yeast species, but a higher number of yeast species was isolated in nondiabetics. T1D children with HbA1c ≤ 7.5 (metabolically controlled) presented higher number of CD4+ T salivary subsets when compared with the other groups of children (non-diabetic and nonmetabolically controlled) and also presented the highest number of individuals without oral yeast colonization. In conclusion, T1D does not predisposes for increased oral yeast colonization and a higher number of salivary CD4+T cells seems to result in the absence of oral colonization by yeasts.


Assuntos
Causalidade , Diabetes Mellitus Tipo 1/complicações , Micoses/epidemiologia , Leveduras/isolamento & purificação , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Mucosa Bucal/microbiologia , Micoses/microbiologia , Prevalência , Medição de Risco , Saliva/microbiologia , Leveduras/classificação
12.
Biochim Biophys Acta ; 1852(9): 1824-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26071642

RESUMO

Human feeding behavior and lifestyle are gradually being altered, favoring the development of metabolic diseases, particularly type 2 diabetes and obesity. Leptin is produced by the adipose tissue acting as a satiety signal. Its levels have been positively correlated with fat mass and hyperleptinemia has been proposed to negatively affect male reproductive function. Nevertheless, the molecular mechanisms by which this hormone affects male fertility remain unknown. Herein, we hypothesize that leptin acts on human Sertoli cells (hSCs), the "nurse cells" of spermatogenesis, altering their metabolism. To test our hypothesis, hSCs were cultured without or with leptin (5, 25 and 50ng/mL). Leptin receptor was identified by qPCR and Western blot. Protein levels of glucose transporters (GLUT1, GLUT2 and GLUT3), phosphofructokinase, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 (MCT4) were determined by Western Blot. LDH activity was assessed and metabolite production/consumption determined by proton nuclear magnetic resonance. Oxidative damage was evaluated by assessing lipid peroxidation, protein carbonilation and nitration. Our data shows that leptin receptor is expressed in hSCs. The concentration of leptin found in lean, healthy patients, upregulated GLUT2 protein levels and concentrations of leptin found in lean and obese patients increased LDH activity. Of note, all leptin concentrations decreased hSCs acetate production illustrating a novel mechanism for this hormone action. Moreover, our data shows that leptin does not induce or protect hSCs from oxidative damage. We report that this hormone modulates the nutritional support of spermatogenesis, illustrating a novel mechanism that may be linked to obesity-induced male infertility.

13.
Exp Cell Res ; 335(1): 91-8, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25907297

RESUMO

Cancer cells present a particular metabolic behavior. We hypothesized that the progression of bladder cancer could be accompanied by changes in cells glycolytic profile. We studied two human bladder cancer cells, RT4 and TCCSUP, in which the latter represents a more invasive stage. The levels of glucose, pyruvate, alanine and lactate in the extracellular media were measured by Proton Nuclear Magnetic Resonance. The protein expression levels of glucose transporters 1 (GLUT1) and 3 (GLUT3), monocarboxylate transporter 4 (MCT4), phosphofructokinase-1 (PFK1), glutamic-pyruvate transaminase (GPT) and lactate dehydrogenase (LDH) were determined. Our data showed that glucose consumption and GLUT3 levels were similar in both cell lines, but TCCSUP cells displayed lower levels of GLUT1 and PFK expression. An increase in pyruvate consumption, concordant with the higher levels of lactate and alanine production, was also detected in TCCSUP cells. Moreover, TCCSUP cells presented lower protein expression levels of GPT and LDH. These results illustrate that bladder cancer progression is associated with alterations in cells glycolytic profile, namely the switch from glucose to pyruvate consumption in the more aggressive stage. This may be useful to develop new therapies and to identify biomarkers for cancer progression.


Assuntos
Glucose/metabolismo , Glicólise/fisiologia , Ácido Pirúvico/metabolismo , Neoplasias da Bexiga Urinária/patologia , Alanina/metabolismo , Alanina Transaminase/biossíntese , Linhagem Celular Tumoral , Progressão da Doença , Transportador de Glucose Tipo 1/biossíntese , Transportador de Glucose Tipo 3/biossíntese , Humanos , L-Lactato Desidrogenase/biossíntese , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/biossíntese , Proteínas Musculares/biossíntese , Invasividade Neoplásica , Estadiamento de Neoplasias , Fosfofrutoquinase-1/biossíntese , Neoplasias da Bexiga Urinária/metabolismo
14.
Molecules ; 21(8)2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27472311

RESUMO

Methylxanthines are a group of phytochemicals derived from the purine base xanthine and obtained from plant secondary metabolism. They are unobtrusively included in daily diet in common products as coffee, tea, energetic drinks, or chocolate. Caffeine is by far the most studied methylxanthine either in animal or epidemiologic studies. Theophylline and theobromine are other relevant methylxanthines also commonly available in the aforementioned sources. There are many disseminated myths about methylxanthines but there is increased scientific knowledge to discuss all the controversy and promise shown by these intriguing phytochemicals. In fact, many beneficial physiologic outcomes have been suggested for methylxanthines in areas as important and diverse as neurodegenerative and respiratory diseases, diabetes or cancer. However, there have always been toxicity concerns with methylxanthine (over)consumption and pharmacologic applications. Herein, we explore the structure-bioactivity relationships to bring light those enumerated effects. The potential shown by methylxanthines in such a wide range of conditions should substantiate many other scientific endeavors that may highlight their adequacy as adjuvant therapy agents and may contribute to the advent of functional foods. Newly designed targeted molecules based on methylxanthine structure may originate more specific and effective outcomes.


Assuntos
Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Xantinas/química , Xantinas/farmacologia , Animais , Cacau/química , Cafeína/química , Cafeína/farmacologia , Humanos , Estrutura Molecular , Metabolismo Secundário , Relação Estrutura-Atividade , Teobromina/química , Teobromina/farmacologia , Teofilina/química , Teofilina/farmacologia
15.
Antimicrob Agents Chemother ; 60(3): 1646-55, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26711773

RESUMO

The importance of Alternaria species fungi to human health ranges from their role as etiological agents of serious infections with poor prognoses in immunosuppressed individuals to their association with respiratory allergic diseases. The present work focuses on Alternaria infectoria, which was used as a model organism of the genus, and was designed to unravel melanin production in response to antifungals. After we characterized the pigment produced by A. infectoria, we studied the dynamics of 1,8-dihydroxynaphthalene (DHN)-melanin production during growth, the degree of melanization in response to antifungals, and how melanization affected susceptibility to several classes of therapeutic drugs. We demonstrate that A. infectoria increased melanin deposition in cell walls in response to nikkomycin Z, caspofungin, and itraconazole but not in response to fluconazole or amphotericin B. These results indicate that A. infectoria activates DHN-melanin synthesis in response to certain antifungal drugs, possibly as a protective mechanism against these drugs. Inhibition of DHN-melanin synthesis by pyroquilon resulted in a lower minimum effective concentration (MEC) of caspofungin and enhanced morphological changes (increased hyphal balloon size), characterized by thinner and less organized A. infectoria cell walls. In summary, A. infectoria synthesizes melanin in response to certain antifungal drugs, and its susceptibility is influenced by melanization, suggesting the therapeutic potential of drug combinations that affect melanin synthesis.


Assuntos
Alternaria/efeitos dos fármacos , Antifúngicos/farmacologia , Parede Celular/efeitos dos fármacos , Melaninas/biossíntese , Aminoglicosídeos/farmacologia , Anfotericina B/farmacologia , Caspofungina , Equinocandinas/farmacologia , Fluconazol/farmacologia , Itraconazol/farmacologia , Lipopeptídeos/farmacologia , Testes de Sensibilidade Microbiana , Naftóis , Pirróis/farmacologia , Quinolinas/farmacologia
16.
Reprod Biomed Online ; 31(4): 544-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26276042

RESUMO

Prediabetes represents a major risk factor for the development of type 2 diabetes mellitus (T2DM). It encompasses some, but not all, T2DM diagnostic criteria. Prediabetes has been recently associated with altered testicular function and increased testicular oxidative stress (OS). Tea is widely consumed and its anti-hyperglycaemic/antioxidant properties are known. This study aimed to evaluate whether white tea (WTEA) consumption by prediabetic rats could prevent testicular OS, preserving sperm quality. For that purpose, WTEA (presenting a high catechin content) was given to 30-day-old streptozotocin-induced prediabetic rats for 2 months. Testicular antioxidant potential and OS were evaluated, as well as sperm parameters, by standard techniques. WTEA consumption improved glucose tolerance and insulin sensitivity in prediabetic rats. Testicular antioxidant potential was increased by WTEA consumption, restoring protein oxidation and lipid peroxidation, although glutathione content and redox state were not altered. WTEA consumption improved sperm concentration and sperm quality (motility, viability and abnormality) was restored. Overall, WTEA consumption improved reproductive health of male prediabetic rats. Based on the study results, WTEA consumption appears to be a natural, economical and effective strategy to counteract the deleterious effects of prediabetes on male reproductive health, but further studies will be needed before a definitive recommendation is made.


Assuntos
Estresse Oxidativo , Estado Pré-Diabético/dietoterapia , Análise do Sêmen , Chá , Testículo/metabolismo , Animais , Complicações do Diabetes/dietoterapia , Complicações do Diabetes/etiologia , Complicações do Diabetes/patologia , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Teste de Tolerância a Glucose , Glutationa/metabolismo , Infertilidade Masculina/dietoterapia , Infertilidade Masculina/etiologia , Infertilidade Masculina/patologia , Resistência à Insulina , Peroxidação de Lipídeos , Masculino , Compostos Fitoquímicos/química , Estado Pré-Diabético/patologia , Estado Pré-Diabético/fisiopatologia , Carbonilação Proteica , Ratos , Ratos Wistar , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Espermatozoides/anormalidades , Chá/química
17.
Br J Nutr ; 113(5): 832-42, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25716141

RESUMO

Diabetes mellitus (DM) is a major public health problem and its incidence is rising dramatically. The brain, particularly the cerebral cortex, is very susceptible to glucose fluctuations and hyperglycaemia-induced oxidative stress. Tea (Camellia sinensis (L.)) is widely consumed; however, the antidiabetic properties of white tea remain largely unexplored. In the present study, we investigated the effects of daily consumption of white tea on the cerebral cortex of prediabetic rats. The cerebral cortex metabolic profile was evaluated, and the expression levels of GLUT, phosphofructokinase-1, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 were assessed. LDH activity was also determined. The cerebral cortex oxidative profile was determined by evaluating its antioxidant power, lipid peroxidation and protein oxidation levels. Catalase, glutathione, glutamate, N-acetylaspartate, aspartate, choline, γ-aminobutyric acid, taurine and valine contents were determined. Daily consumption of white tea ameliorated glucose tolerance and insulin sensitivity. Moreover, white tea altered the cortex glycolytic profile, modulating GLUT expression and lactate and alanine contents. Finally, white tea consumption restored protein oxidation and lipid peroxidation levels and catalase expression, and improved antioxidant capacity. In conclusion, daily consumption of white tea improved the cerebral cortex metabolic and oxidative profile in prediabetic rats, suggesting it as a good, safe and inexpensive strategy to prevent DM-related effects in the cerebral cortex.


Assuntos
Camellia sinensis/química , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Folhas de Planta/química , Brotos de Planta/química , Estado Pré-Diabético/dietoterapia , Chá , Animais , Biomarcadores/metabolismo , Camellia sinensis/crescimento & desenvolvimento , Córtex Cerebral/enzimologia , Regulação da Expressão Gênica , Glutationa/metabolismo , Glicólise , Resistência à Insulina , Peroxidação de Lipídeos , Masculino , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/enzimologia , Oxirredução , Estresse Oxidativo , Oxirredutases/genética , Oxirredutases/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Estado Pré-Diabético/enzimologia , Estado Pré-Diabético/metabolismo , Carbonilação Proteica , Distribuição Aleatória , Ratos Wistar , Chá/efeitos adversos
18.
Antimicrob Agents Chemother ; 58(5): 2894-904, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24614372

RESUMO

The present work reports the effects of caspofungin, a ß-1,3-glucan synthase inhibitor, and nikkomycin Z, an inhibitor of chitin synthases, on two strains of Alternaria infectoria, a melanized fungus involved in opportunistic human infections and respiratory allergies. One of the strains tested, IMF006, bore phenotypic traits that conferred advantages in resisting antifungal treatment. First, the resting cell wall chitin content was higher and in response to caspofungin, the chitin level remained constant. In the other strain, IMF001, the chitin content increased upon caspofungin treatment to values similar to basal IMF006 levels. Moreover, upon caspofungin treatment, the FKS1 gene was upregulated in IMF006 and downregulated in IMF001. In addition, the resting ß-glucan content was also different in both strains, with higher levels in IMF001 than in IMF006. However, this did not provide any advantage with respect to echinocandin resistance. We identified eight different chitin synthase genes and studied relative gene expression when the fungus was exposed to the antifungals under study. In both strains, exposure to caspofungin and nikkomycin Z led to modulation of the expression of class V and VII chitin synthase genes, suggesting its importance in the robustness of A. infectoria. The pattern of A. infectoria phagocytosis and activation of murine macrophages by spores was not affected by caspofungin. Monotherapy with nikkomycin Z and caspofungin provided only fungistatic inhibition, while a combination of both led to fungal cell lysis, revealing a strong synergistic action between the chitin synthase inhibitor and the ß-glucan synthase inhibitor against this fungus.


Assuntos
Alternaria/efeitos dos fármacos , Alternaria/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Quitina/metabolismo , Inibidores Enzimáticos/farmacologia , Glucanos/metabolismo , Antifúngicos/farmacologia , Quitina Sintase/biossíntese
19.
Mol Hum Reprod ; 20(11): 1067-76, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25205674

RESUMO

Melatonin co-operates with insulin in the regulation of glucose homeostasis. Within the testis, glucose metabolism in the somatic Sertoli cells (SCs) is pivotal for spermatogenesis. Since the effects of melatonin on male reproductive physiology remain largely unknown, we hypothesized that melatonin may affect spermatogenesis by modulating SC metabolism, interacting with insulin. To test our hypothesis, rat SCs were maintained in culture for 24 h in the presence of insulin, melatonin or both and metabolite production/consumption was determined by proton nuclear magnetic resonance ((1)H-NMR). Protein levels of glucose transporters (GLUT1 and GLUT3), phosphofructokinase 1, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 were determined by western blot. LDH activity was also assessed. SCs treated with melatonin showed an increase in glucose consumption via modulation of GLUT1 levels, but decreased LDH protein expression and activity, which resulted in lower lactate production. Moreover, SCs exposed to melatonin produced and accumulated less acetate than insulin-exposed cells. The combined treatment (insulin plus melatonin) increased acetate production by SCs, but intracellular acetate content remained lower than in insulin exposed cells. Finally, the intracellular redox state, as reflected by intracellular lactate/alanine ratio, was maintained at control levels in SCs by melatonin exposure (i.e. melatonin, alone or with insulin, increased the lactate/alanine ratio versus cells treated with insulin). Furthermore, SCs exposed to insulin plus melatonin produced more lactate and maintained the protein levels of some glycolysis-related enzymes and transporters at control levels. These findings illustrate that melatonin regulates SCs metabolism, and thus may affect spermatogenesis. Since lactate produced by SCs provides nutritional support and has an anti-apoptotic effect in developing germ cells, melatonin supplementation may be an effective therapy for diabetic male individuals facing subfertility/infertility.


Assuntos
Glicólise/efeitos dos fármacos , Melatonina/farmacologia , Células de Sertoli/efeitos dos fármacos , Animais , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Infertilidade Masculina/metabolismo , Insulina/farmacologia , L-Lactato Desidrogenase/metabolismo , Masculino , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Fosfofrutoquinase-1/metabolismo , Ratos , Ratos Wistar , Células de Sertoli/metabolismo
20.
Med Mycol ; 52(2): 202-10, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24576997

RESUMO

Many fungi use membrane vesicles to transport complex molecules across their cell walls. Like mammalian exosomes, fungal vesicles contain lipids, proteins, and polysaccharides, many of which are associated with virulence. Here we identify and characterize extracellular vesicles (EVs) in Alternaria infectoria, a ubiquitous, environmental filamentous fungus that is also an opportunistic human pathogen. Examination of the A. infectoria EVs revealed a morphology similar to that of vesicles described in other fungal species. Of note, proteomic analysis detected a reduced number of vesicle-associated proteins. There were two prevalent categories among the 20 identified proteins, including the polysaccharide metabolism group, probably related to plant host invasion or biosynthesis/degradation of cell wall components, and the nuclear proteins, especially DNA repair enzymes. We also found enzymes related to pigment synthesis, adhesion to the host cell, and trafficking of vesicles/organelles/molecules. This is the first time EV secretions have been identified in a filamentous fungus. We believe that these vesicles might have a role in virulence.


Assuntos
Alternaria/metabolismo , Exossomos/metabolismo , Alternaria/ultraestrutura , Exossomos/química , Exossomos/ultraestrutura , Proteínas Fúngicas/análise , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Proteoma/análise , Fatores de Virulência/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA