Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RSC Adv ; 14(30): 21655-21667, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38979471

RESUMO

One of the biggest issues the world is currently experiencing is the scarcity of pure water due to the contamination of pure water by human activities. Highly efficient, semiconducting photocatalytic materials have great potential as future catalytic materials for facilitating the clean-up process of contaminated water. Among the many semiconductor photocatalysts, non-metal-doped zinc oxide (ZnO) nanoparticles have attracted special attention in the scientific field for environmental remediation applications. The present paper reports an easy and viable synthesis of C-, N-, and S-based ZnO semiconductor photocatalysts through a simple heating method. The structural changes in the obtained samples were studied using XRD, TG/DTA, and FT-IR analyses, and morphological examinations were performed using TEM and SEM. The quantification of non-metal dopants was carried out using CNS and XPS analyses. The surface areas of the samples were analyzed using the BET method and the band energies of the samples were measured using UV-vis-diffuse reflectance Kubelka-Munk plots. Photoactivity studies were performed and revealed that the utilized in situ method resulted in the development of high-performance sulphur - (81.4%, k = 1.951 × 10-2 min-1), nitrogen - (78.5%, k = 2.271 × 10-2 min-1), and carbon - (67.2%, k = 1.392 × 10-2 min-1) doped ZnO photocatalysts. As revealed through XPS and UV analyses, a possible electron-transfer mechanism is suggested, wherein electronic transition occurred from different sub-bands when non-metal elements were introduced into the ZnO lattice. The study paves the way for the bulk-scale fabrication of doped nanoparticles through a simple heating method, whereby the unique combination of the present method with bandgap engineering will ultimately produce advanced non-metal-based ZnO photocatalysts that could find useful applications in sustainable industrial sectors.

2.
Chempluschem ; : e202400025, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436967

RESUMO

Enzyme immobilization can offer a range of significant advantages, including reusability, and increased selectivity, stability, and activity. In this work, a central composite design (CCD) of experiments and response surface methodology (RSM) were used to study, for the first time, the L-asparaginase (ASNase) immobilization onto functionalized carbon xerogels (CXs). The best results were achieved using CXs obtained by hydrothermal oxidation with nitric acid and subsequent heat treatment in a nitrogen flow at 600 °C (CX-OX-600). Under the optimal conditions (81 min of contact time, pH 6.2 and 0.36 g/L of ASNase), an immobilization yield (IY) of 100 % and relative recovered activity (RRA) of 103 % were achieved. The kinetic parameters obtained also indicate a 1.25-fold increase in the affinity of ASNase towards the substrate after immobilization. Moreover, the immobilized enzyme retained 97 % of its initial activity after 6 consecutive reaction cycles. All these outcomes confirm the promising properties of functionalized CXs as support for ASNase, bringing new insights into the development of an efficient and stable immobilization platform for use in the pharmaceutical industry, food industry, and biosensors.

3.
Sustain Energy Fuels ; 8(6): 1225-1235, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38481764

RESUMO

This study investigates the hydrogen evolution reaction (HER) efficiency of two photosystems incorporating an all-inorganic molecular thiomolybdate [Mo3S13]2- cluster as a HER catalyst. First, we delve into the performance of a homogeneous [Mo3S13]2-/[Ru(bpy)3]2+ (Mo3/Ru) dyad which demonstrates high turnover frequencies (TOFs) and apparent quantum yields (AQYs) at 445 nm approaching the level of 0.5%, yet its performance is marked by pronounced deactivation. In contrast, a heterogeneous approach involves anchoring [Mo3S13]2- onto graphitic carbon nitride (GCN) nanosheets through weak electrostatic association with its triazine/heptazine scaffold. [Mo3S13]2-/GCN (Mo3/GCN) displays effective H2 generation under visible light, with TOF metrics on par with those of its homogeneous analog. Although substantial leaching of [Mo3S13]2- species from the Mo3/GCN surface occurs, the remaining {Mo3}-based centers demonstrate impressive stability, leading to enduring HER performance, starkly distinguishing it from the homogeneous Mo3/Ru photosystem. Photoluminescence (PL) quenching experiments confirm that the performance of Mo3/GCN is not limited by the quality of the inorganic interface, but could be optimized by using higher surface area supports or a higher concentration of [Mo3S13]2- sites. Our findings showcase complexities underlying the evaluation and comparison of photosystems comprising well-defined catalytic centers and pave the way for developing analogous surface-supported (photo)catalysts with broad use in energy applications.

4.
Artigo em Português | Arca: Repositório institucional da Fiocruz | ID: arc-15369

RESUMO

Este artigo versa sobre a mobilidade urbana e suas consequências na saúde urbana. Pretende igualmente apresentar pesquisas recentes sobre o tema e as razões históricas que transformaram o automóvel no principal meio de transporte brasileiro, ao menos para as classes mais favorecidas, em detrimento dos transportes públicos, utilizados pela grande massa de trabalhadores. O uso excessivo do automóvel compromete a qualidade do ar, que, somado ao estresse, à vibração e ao ruído, atinge a saúde e a qualidade de vida da população exposta aos transtornos causados pelos longos engarrafamentos. No Rio de Janeiro, esse fenômeno atinge uma etapa delicada, no momento em que se prepara para ser sede da Copa de Mundo de 2014 e as Olimpíadas de 2016.


Assuntos
Saúde da População Urbana , Meios de Transporte , Saúde Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA