Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 159(6): 1461-75, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25433701

RESUMO

Identifying driver genes in cancer remains a crucial bottleneck in therapeutic development and basic understanding of the disease. We developed Helios, an algorithm that integrates genomic data from primary tumors with data from functional RNAi screens to pinpoint driver genes within large recurrently amplified regions of DNA. Applying Helios to breast cancer data identified a set of candidate drivers highly enriched with known drivers (p < 10(-14)). Nine of ten top-scoring Helios genes are known drivers of breast cancer, and in vitro validation of 12 candidates predicted by Helios found ten conferred enhanced anchorage-independent growth, demonstrating Helios's exquisite sensitivity and specificity. We extensively characterized RSF-1, a driver identified by Helios whose amplification correlates with poor prognosis, and found increased tumorigenesis and metastasis in mouse models. We have demonstrated a powerful approach for identifying driver genes and how it can yield important insights into cancer.


Assuntos
Algoritmos , Neoplasias da Mama/genética , Animais , Teorema de Bayes , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Feminino , Estudo de Associação Genômica Ampla , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Interferência de RNA
2.
Genes Dev ; 35(5-6): 354-366, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602871

RESUMO

Polycomb repressive complex 1 (PRC1) and PRC2 are critical epigenetic developmental regulators. PRC1 and PRC2 largely overlap in their genomic binding and cooperate to establish repressive chromatin domains demarcated by H2AK119ub and H3K27me3. However, the functional contribution of each complex to gene repression has been a subject of debate, and understanding of its physiological significance requires further studies. Here, using the developing murine epidermis as a paradigm, we uncovered a previously unappreciated functional redundancy between Polycomb complexes. Coablation of PRC1 and PRC2 in embryonic epidermal progenitors resulted in severe defects in epidermal stratification, a phenotype not observed in the single PRC1-null or PRC2-null epidermis. Molecular dissection indicated a loss of epidermal identity that was coupled to a strong derepression of nonlineage transcription factors, otherwise repressed by either PRC1 or PRC2 in the absence of its counterpart. Ectopic expression of subsets of PRC1/2-repressed nonepidermal transcription factors in wild-type epidermal stem cells was sufficient to suppress epidermal identity genes, highlighting the importance of functional redundancy between PRC1 and PRC2. Altogether, our studies show how PRC1 and PRC2 function as two independent counterparts, thereby providing a repressive safety net that protects and preserves lineage identity.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Células Epidérmicas/citologia , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Animais , Células-Tronco Embrionárias/metabolismo , Células Epidérmicas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Camundongos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 2/genética , Proteínas do Grupo Polycomb/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Cell ; 148(1-2): 244-58, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22265415

RESUMO

p53 is a frequent target for mutation in human tumors, and mutant p53 proteins can actively contribute to tumorigenesis. We employed a three-dimensional culture model in which nonmalignant breast epithelial cells form spheroids reminiscent of acinar structures found in vivo, whereas breast cancer cells display highly disorganized morphology. We found that mutant p53 depletion is sufficient to phenotypically revert breast cancer cells to a more acinar-like morphology. Genome-wide expression analysis identified the mevalonate pathway as significantly upregulated by mutant p53. Statins and sterol biosynthesis intermediates reveal that this pathway is both necessary and sufficient for the phenotypic effects of mutant p53 on breast tissue architecture. Mutant p53 associates with sterol gene promoters at least partly via SREBP transcription factors. Finally, p53 mutation correlates with highly expressed sterol biosynthesis genes in human breast tumors. These findings implicate the mevalonate pathway as a therapeutic target for tumors bearing mutations in p53.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ácido Mevalônico/metabolismo , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Mutação , Prenilação , Regiões Promotoras Genéticas , Sinvastatina/farmacologia , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
4.
Genes Dev ; 31(6): 553-566, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28404630

RESUMO

The female mammary gland is a very dynamic organ that undergoes continuous tissue remodeling during adulthood. Although it is well established that the number of menstrual cycles and pregnancy (in this case transiently) increase the risk of breast cancer, the reasons are unclear. Growing clinical and experimental evidence indicates that improper involution plays a role in the development of this malignancy. Recently, we described the miR-424(322)/503 cluster as an important regulator of mammary epithelial involution after pregnancy. Here, through the analysis of ∼3000 primary tumors, we show that miR-424(322)/503 is commonly lost in a subset of aggressive breast cancers and describe the genetic aberrations that inactivate its expression. Furthermore, through the use of a knockout mouse model, we demonstrate for the first time that loss of miR-424(322)/503 promotes breast tumorigenesis in vivo. Remarkably, we found that loss of miR-424(322)/503 promotes chemoresistance due to the up-regulation of two of its targets: BCL-2 and insulin-like growth factor-1 receptor (IGF1R). Importantly, targeted therapies blocking the aberrant activity of these targets restore sensitivity to chemotherapy. Overall, our studies reveal miR-424(322)/503 as a tumor suppressor in breast cancer and provide a link between mammary epithelial involution, tumorigenesis, and the phenomenon of chemoresistance.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Deleção de Genes , Genes Supressores de Tumor , Humanos , Neoplasias Mamárias Experimentais/genética , Camundongos , Gravidez , Complicações Neoplásicas na Gravidez/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Fosfatases cdc25/genética
5.
Cell ; 137(6): 1047-61, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19524508

RESUMO

Identification of bona fide tumor suppressors is often challenging because of the large number of genetic alterations present in most human cancers. To evaluate candidate genes present within chromosomal regions recurrently deleted in human cancers, we coupled high-resolution genomic analysis with a two-stage genetic study using RNA interference (RNAi). We found that Cyfip1, a subunit of the WAVE complex, which regulates cytoskeletal dynamics, is commonly deleted in human epithelial cancers. Reduced expression of CYFIP1 is commonly observed during invasion of epithelial tumors and is associated with poor prognosis in this setting. Silencing of Cyfip1 disturbed normal epithelial morphogenesis in vitro and cooperated with oncogenic Ras to produce invasive carcinomas in vivo. Mechanistically, we have linked alterations in WAVE-regulated actin dynamics with impaired cell-cell adhesion and cell-ECM interactions. Thus, we propose Cyfip1 as an invasion suppressor gene.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma/metabolismo , Invasividade Neoplásica , Animais , Carcinoma/diagnóstico , Carcinoma/patologia , Linhagem Celular Tumoral , Células Cultivadas , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Queratinócitos/metabolismo , Camundongos , Transplante de Neoplasias , Transplante Heterólogo
6.
Genes Dev ; 29(15): 1631-48, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26227964

RESUMO

HER2-positive (HER2(+)) breast adenocarcinomas are a heterogeneous group in which hormone receptor (HR) status influences therapeutic decisions and patient outcome. By combining genome-wide RNAi screens with regulatory network analysis, we identified STAT3 as a critically activated master regulator of HR(-)/HER2(+) tumors, eliciting tumor dependency in these cells. Mechanistically, HR(-)/HER2(+) cells secrete high levels of the interleukin-6 (IL-6) cytokine, inducing the activation of STAT3, which in turn promotes a second autocrine stimulus to increase S100A8/9 complex (calprotectin) production and secretion. Increased calprotectin levels activate signaling pathways involved in proliferation and resistance. Importantly, we demonstrated that inhibition of the IL-6-Janus kinase 2 (JAK2)-STAT3-calprotectin axis with FDA-approved drugs, alone and in combination with HER2 inhibitors, reduced the tumorigenicity of HR(-)/HER2(+) breast cancers, opening novel targeted therapeutic opportunities.


Assuntos
Neoplasias da Mama/fisiopatologia , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição STAT3/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Carcinogênese/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Feminino , Estudo de Associação Genômica Ampla , Xenoenxertos , Humanos , Interleucina-6/metabolismo , Janus Quinase 2/metabolismo , Camundongos , Camundongos SCID , Quinolinas/farmacologia , Quinolonas , Interferência de RNA , Fator de Transcrição STAT3/genética
7.
Neurourol Urodyn ; 41(7): 1573-1581, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35866192

RESUMO

PURPOSE: The artificial urinary sphincter (AUS) is one of the most effective surgical treatments for male urinary incontinence regardless of its severity. Current knowledge comes from high-volume centers, but little is known about the performance of this surgery from community practices. This study aims to report contemporary AUS performance in a nationwide observational study in Colombia. METHODS: Male patients who underwent AUS surgery with AMS 800™ between 2000 and 2020 in more than 17 centers and four cities were identified. Pre, intra, and postoperative characteristics were evaluated, mainly addressing patient reported outcomes measurements in the postoperative period. Retrospective and prospective data collection and descriptive analysis were completed. Kaplan-Meier analysis was used to determine AUS survival rate. RESULTS: Out of an initial 667 cases, a total of 215 patients met inclusion and exclusion criteria and were included. Mean age was 67 ± 9.4 years, and mean follow-up was 6.0 ± 4.4 years with maximum range of 14 years. The etiology of urinary incontinence was prostate cancer surgery in 141 (81%) of the cases. The rest of the cases were related to benign prostatic disease or spinal cord injury. It is noteworthy that out of 115 patients, only 59 (51.3%) reported previous formal pelvic floor rehabilitation. Subjective severity of urinary incontinence determined by a visual analog scale showed a decrease in 4.5 points after sphincter implantation. Sphincter removal was required in 50 (23.2%) cases. The main reasons for implant removal were urethral erosion and infection. The sphincter survival rate at 2, 5, 8, 10, and 14 years was 76%, 70%, 60%, 57%, and 17%, respectively. Of the subjects at the last follow-up with the device still in place, 80.7% defined their urinary condition as "does not cause or causes minor discomfort," and 99% would recommend the device to a friend or relative in the same condition. CONCLUSIONS: This series from a community-based practice shows the lack of adherence to clinical practice guidelines and the lack of standardized data collection. In contrast, this study provides real-world data on explantation and revision rates, allows physicians to inform patients and to have clear metrics for a shared decision-making process before the procedure.


Assuntos
Incontinência Urinária por Estresse , Incontinência Urinária , Esfíncter Urinário Artificial , Adolescente , Humanos , Masculino , Implantação de Prótese/métodos , Estudos Retrospectivos , Resultado do Tratamento , Incontinência Urinária/complicações , Incontinência Urinária/cirurgia , Incontinência Urinária por Estresse/cirurgia , Esfíncter Urinário Artificial/efeitos adversos
8.
Genes Dev ; 28(7): 765-82, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24636986

RESUMO

The mammary gland is a very dynamic organ that undergoes continuous remodeling. The critical regulators of this process are not fully understood. Here we identify the microRNA cluster miR-424(322)/503 as an important regulator of epithelial involution after pregnancy. Through the generation of a knockout mouse model, we found that regression of the secretory acini of the mammary gland was compromised in the absence of miR-424(322)/503. Mechanistically, we show that miR-424(322)/503 orchestrates cell life and death decisions by targeting BCL-2 and IGF1R (insulin growth factor-1 receptor). Furthermore, we demonstrate that the expression of this microRNA cluster is regulated by TGF-ß, a well-characterized regulator of mammary involution. Overall, our data suggest a model in which activation of the TGF-ß pathway after weaning induces the transcription of miR-424(322)/503, which in turn down-regulates the expression of key genes. Here, we unveil a previously unknown, multilayered regulation of epithelial tissue remodeling coordinated by the microRNA cluster miR-424(322)/503.


Assuntos
Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glândulas Mamárias Animais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Morte Celular/genética , Linhagem Celular , Feminino , Técnicas de Inativação de Genes , Humanos , Glândulas Mamárias Animais/citologia , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Desmame
9.
Nature ; 524(7566): 471-5, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26266980

RESUMO

Since its discovery in 1989, efforts to grow clinical isolates of the hepatitis C virus (HCV) in cell culture have met with limited success. Only the JFH-1 isolate has the capacity to replicate efficiently in cultured hepatoma cells without cell culture-adaptive mutations. We hypothesized that cultured cells lack one or more factors required for the replication of clinical isolates. To identify the missing factors, we transduced Huh-7.5 human hepatoma cells with a pooled lentivirus-based human complementary DNA (cDNA) library, transfected the cells with HCV subgenomic replicons lacking adaptive mutations, and selected for stable replicon colonies. This led to the identification of a single cDNA, SEC14L2, that enabled RNA replication of diverse HCV genotypes in several hepatoma cell lines. This effect was dose-dependent, and required the continuous presence of SEC14L2. Full-length HCV genomes also replicated and produced low levels of infectious virus. Remarkably, SEC14L2-expressing Huh-7.5 cells also supported HCV replication following inoculation with patient sera. Mechanistic studies suggest that SEC14L2 promotes HCV infection by enhancing vitamin E-mediated protection against lipid peroxidation. This provides a foundation for development of in vitro replication systems for all HCV isolates, creating a useful platform to dissect the mechanisms by which cell culture-adaptive mutations act.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virologia , Proteínas de Transporte/metabolismo , Técnicas de Cultura de Células , Genótipo , Hepacivirus/crescimento & desenvolvimento , Hepacivirus/genética , Fatores Celulares Derivados do Hospedeiro/metabolismo , Lipoproteínas/metabolismo , Transativadores/metabolismo , Replicação Viral , Antioxidantes/metabolismo , Carcinoma Hepatocelular/genética , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Células Cultivadas , Biblioteca Gênica , Genoma Viral/genética , Hepacivirus/fisiologia , Fatores Celulares Derivados do Hospedeiro/genética , Humanos , Lentivirus/genética , Peroxidação de Lipídeos , Lipoproteínas/genética , Mutação/genética , RNA Viral/biossíntese , RNA Viral/genética , Replicon/genética , Soro/virologia , Transativadores/genética , Transdução Genética , Replicação Viral/genética , Vitamina E/metabolismo
10.
J Biol Chem ; 294(1): 157-167, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30420426

RESUMO

Siderophores make iron accessible under iron-limited conditions and play a crucial role in the survival of microorganisms. Because of their remarkable metal-scavenging properties and ease in crossing cellular envelopes, siderophores hold great potential in biotechnological applications, raising the need for a deeper knowledge of the molecular mechanisms underpinning the siderophore pathway. Here, we report the structural and functional characterization of a siderophore-interacting protein from the marine bacterium Shewanella frigidimarina NCIBM400 (SfSIP). SfSIP is a flavin-containing ferric-siderophore reductase with FAD- and NAD(P)H-binding domains that have high homology with other characterized SIPs. However, we found here that it mechanistically departs from what has been described for this family of proteins. Unlike other FAD-containing SIPs, SfSIP did not discriminate between NADH and NADPH. Furthermore, SfSIP required the presence of the Fe2+-scavenger, ferrozine, to use NAD(P)H to drive the reduction of Shewanella-produced hydroxamate ferric-siderophores. Additionally, this is the first SIP reported that also uses a ferredoxin as electron donor, and in contrast to NAD(P)H, its utilization did not require the mediation of ferrozine, and electron transfer occurred at fast rates. Finally, FAD oxidation was thermodynamically coupled to deprotonation at physiological pH values, enhancing the solubility of ferrous iron. On the basis of these results and the location of the SfSIP gene downstream of a sequence for putative binding of aerobic respiration control protein A (ArcA), we propose that SfSIP contributes an additional layer of regulation that maintains cellular iron homeostasis according to environmental cues of oxygen availability and cellular iron demand.


Assuntos
Organismos Aquáticos/química , Proteínas de Bactérias/química , Shewanella/química , Sideróforos , Organismos Aquáticos/genética , Proteínas de Bactérias/genética , Flavina-Adenina Dinucleotídeo/química , NADP/química , Domínios Proteicos , Shewanella/genética
11.
Trop Med Int Health ; 25(11): 1385-1394, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32790891

RESUMO

OBJECTIVE: COVID-19 diagnosis is a critical problem, mainly due to the lack or delay in the test results. We aimed to obtain a model to predict SARS-CoV-2 infection in suspected patients reported to the Brazilian surveillance system. METHODS: We analysed suspected patients reported to the National Surveillance System that corresponded to the following case definition: patients with respiratory symptoms and fever, who travelled to regions with local or community transmission or who had close contact with a suspected or confirmed case. Based on variables routinely collected, we obtained a multiple model using logistic regression. The area under the receiver operating characteristic curve (AUC) and accuracy indicators were used for validation. RESULTS: We described 1468 COVID-19 cases (confirmed by RT-PCR) and 4271 patients with other illnesses. With a data subset including 80% of patients from Sao Paulo (SP) and Rio Janeiro (RJ), we obtained a function which reached an AUC of 95.54% (95% CI: 94.41-96.67%) for the diagnosis of COVID-19 and accuracy of 90.1% (sensitivity 87.62% and specificity 92.02%). In a validation dataset including the other 20% of patients from SP and RJ, this model exhibited an AUC of 95.01% (92.51-97.5%) and accuracy of 89.47% (sensitivity 87.32% and specificity 91.36%). CONCLUSION: We obtained a model suitable for the clinical diagnosis of COVID-19 based on routinely collected surveillance data. Applications of this tool include early identification for specific treatment and isolation, rational use of laboratory tests, and input for modelling epidemiological trends.


OBJECTIF: Le diagnostic du COVID-19 est un problème critique, principalement dû au manque ou au retard dans les résultats du test. Nous visions à obtenir un modèle pour prédire l'infection par le SRAS-CoV-2 chez les patients suspects signalés au système de surveillance brésilien. MÉTHODES: Nous avons analysé les patients suspects signalés au Système National de Surveillance qui correspondaient à la définition de cas suivante: patients présentant des symptômes respiratoires et de la fièvre, qui se sont rendus dans des régions à transmission locale ou communautaire ou qui ont eu des contacts étroits avec un cas suspect ou confirmé. Sur la base de variables collectées en routine, nous avons obtenu un modèle multiple en utilisant la régression logistique. L'aire sous la courbe caractéristique de fonctionnement du récepteur (AUC) et les indicateurs de précision ont été utilisés pour la validation. RÉSULTATS: Nous avons décrit 1.468 cas de COVID-19 (confirmés par RT-PCR) et 4.271 patients atteints d'autres maladies. Avec un sous-ensemble de données comprenant 80% de patients de Sao Paulo (SP) et de Rio de Janeiro (RJ), nous avons obtenu une fonction qui atteignait une AUC de 95,54% (IC95%: 94,41% - 96,67%) pour le diagnostic de COVID- 19 et une précision de 90,1% (sensibilité 87,62% et spécificité 92,02%). Dans un ensemble de données de validation incluant les 20% restants de patients de SP et de RJ, ce modèle présentait une AUC de 95,01% (92,51% - 97,5%) et une précision de 89,47% (sensibilité 87,32% et spécificité 91,36%). CONCLUSION: Nous avons obtenu un modèle adapté au diagnostic clinique du COVID-19 sur la base des données de surveillance collectées en routine. Les applications de cet outil comprennent l'identification précoce pour un traitement et un isolement spécifiques, l'utilisation rationnelle des tests de laboratoire et des données pour modéliser les tendances épidémiologiques.


Assuntos
COVID-19/diagnóstico , Modelos Biológicos , Vigilância da População , Adulto , Área Sob a Curva , Brasil , Infecções por Coronavirus , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Curva ROC , Reprodutibilidade dos Testes , SARS-CoV-2 , Sensibilidade e Especificidade
12.
Genes Dev ; 25(5): 485-98, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21317239

RESUMO

Polycomb protein group (PcG)-dependent trimethylation on H3K27 (H3K27me3) regulates identity of embryonic stem cells (ESCs). How H3K27me3 governs adult SCs and tissue development is unclear. Here, we conditionally target H3K27 methyltransferases Ezh2 and Ezh1 to address their roles in mouse skin homeostasis. Postnatal phenotypes appear only in doubly targeted skin, where H3K27me3 is abolished, revealing functional redundancy in EZH1/2 proteins. Surprisingly, while Ezh1/2-null hair follicles (HFs) arrest morphogenesis and degenerate due to defective proliferation and increased apoptosis, epidermis hyperproliferates and survives engraftment. mRNA microarray studies reveal that, despite these striking phenotypic differences, similar genes are up-regulated in HF and epidermal Ezh1/2-null progenitors. Featured prominently are (1) PcG-controlled nonskin lineage genes, whose expression is still significantly lower than in native tissues, and (2) the PcG-regulated Ink4a/Inkb/Arf locus. Interestingly, when EZH1/2 are absent, even though Ink4a/Arf/Ink4b genes are fully activated in HF cells, they are only partially so in epidermal progenitors. Importantly, transduction of Ink4b/Ink4a/Arf shRNAs restores proliferation/survival of Ezh1/2-null HF progenitors in vitro, pointing toward the relevance of this locus to the observed HF phenotypes. Our findings reveal new insights into Polycomb-dependent tissue control, and provide a new twist to how different progenitors within one tissue respond to loss of H3K27me3.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Folículo Piloso/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Homeostase/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Fatores de Transcrição/metabolismo , Cicatrização/genética , Fator 1 de Ribosilação do ADP/genética , Apoptose/genética , Proliferação de Células , Sobrevivência Celular/genética , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Proteínas de Ligação a DNA/genética , Proteína Potenciadora do Homólogo 2 de Zeste , Células Epidérmicas , Epiderme/transplante , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Folículo Piloso/citologia , Histona-Lisina N-Metiltransferase/genética , Metilação , Complexo Repressor Polycomb 2 , Transplante de Pele , Células-Tronco/metabolismo , Fatores de Transcrição/genética
13.
EMBO J ; 32(14): 1990-2000, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23673358

RESUMO

While the Polycomb complex is known to regulate cell identity in ES cells, its role in controlling tissue-specific stem cells is not well understood. Here we show that removal of Ezh1 and Ezh2, key Polycomb subunits, from mouse skin results in a marked change in fate determination in epidermal progenitor cells, leading to an increase in the number of lineage-committed Merkel cells, a specialized subtype of skin cells involved in mechanotransduction. By dissecting the genetic mechanism, we showed that the Polycomb complex restricts differentiation of epidermal progenitor cells by repressing the transcription factor Sox2. Ablation of Sox2 results in a dramatic loss of Merkel cells, indicating that Sox2 is a critical regulator of Merkel cell specification. We show that Sox2 directly activates Atoh1, the obligate regulator of Merkel cell differentiation. Concordantly, ablation of Sox2 attenuated the Ezh1/2-null phenotype, confirming the importance of Polycomb-mediated repression of Sox2 in maintaining the epidermal progenitor cell state. Together, these findings define a novel regulatory network by which the Polycomb complex maintains the progenitor cell state and governs differentiation in vivo.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Células de Merkel/citologia , Células de Merkel/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Complexo Repressor Polycomb 2/deficiência , Complexo Repressor Polycomb 2/genética , Gravidez , Fatores de Transcrição SOXB1/deficiência , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
An Acad Bras Cienc ; 87(4): 2091-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26536850

RESUMO

This paper records the first report of Megastigmus transvaalensis Hussey (Hymenoptera: Torymidae) in Brazilian peppertree, Schinus terebinthifolius Raddi (Anacardiaceae) drupes in Sorocaba, state of São Paulo, Brazil. This wasp is an invasive species and was found damaging S. terebinthifolius drupes in urban areas (35.0 ± 15.8%), natural forests (21.5 ± 10.2%) and restoration areas (15.8 ± 8.4%). The bio-ecology and damage caused by M. transvaalensis in the S. terebinthifolius drupes warrants further study focused upon the management of this phytophagous wasp. Megastigmus transvaalensis has a potential to be disseminated throughout Brazil and is posing a threat to the natural regeneration of S. terebinthifolius in the native forests and restoration areas and ecological regions of this country.


Assuntos
Anacardiaceae/parasitologia , Vespas/fisiologia , Anacardiaceae/classificação , Animais , Comportamento Animal , Feminino , Masculino , Vespas/classificação
15.
Am J Pathol ; 182(4): 1171-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23410519

RESUMO

miRNAs are small noncoding RNAs with critical roles in a large variety of biological processes such as development and tumorigenesis. miRNA expression profiling has been reported to be a powerful tool to classify tissue samples, including cancers, based on their developmental lineage. In this study, we have profiled the expression of miRNAs in bladder carcinoma in situ (CIS) and distinct cell compartments of the normal bladder, namely umbrella and basal-intermediate urothelial cells, as well as the muscularis propria. We identified several miRNAs differentially expressed between umbrella and basal-intermediate cells (miR-133a, miR-139-3p, miR-142-3p, miR-199b-5p, and miR-221). In situ hybridization confirmed the expression of miR-133a and miR-139-3p in umbrella cells, and miR-142-3p in basal-intermediate cells. Strikingly, miRNA expression levels of CIS most closely resembled the miRNA profile of umbrella cells. Finally, we examined well-established umbrella and basal-intermediate cell immunohistochemical biomarkers in an independent series of CIS samples. Again, this analysis revealed the significant expression of umbrella-specific markers in CIS when compared to non-CIS lesions. Overall, our studies represent a comprehensive and accurate description of the different miRNAs expressed in CIS tumors and three distinct histological areas of the urinary bladder. Notably, this study provides evidence of the possible origin relationship between CIS and normal umbrella cells.


Assuntos
Carcinoma in Situ/genética , Carcinoma in Situ/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Adolescente , Adulto , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Separação Celular , Análise por Conglomerados , Humanos , Imuno-Histoquímica , Microdissecção e Captura a Laser , Masculino , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reprodutibilidade dos Testes , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Urotélio/metabolismo , Urotélio/patologia
16.
Nat Genet ; 37(11): 1281-8, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16200065

RESUMO

Loss-of-function phenotypes often hold the key to understanding the connections and biological functions of biochemical pathways. We and others previously constructed libraries of short hairpin RNAs that allow systematic analysis of RNA interference-induced phenotypes in mammalian cells. Here we report the construction and validation of second-generation short hairpin RNA expression libraries designed using an increased knowledge of RNA interference biochemistry. These constructs include silencing triggers designed to mimic a natural microRNA primary transcript, and each target sequence was selected on the basis of thermodynamic criteria for optimal small RNA performance. Biochemical and phenotypic assays indicate that the new libraries are substantially improved over first-generation reagents. We generated large-scale-arrayed, sequence-verified libraries comprising more than 140,000 second-generation short hairpin RNA expression plasmids, covering a substantial fraction of all predicted genes in the human and mouse genomes. These libraries are available to the scientific community.


Assuntos
Biblioteca Gênica , Genoma Humano , Camundongos/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Inativação Gênica , Humanos , MicroRNAs/metabolismo , Plasmídeos
17.
Biomol NMR Assign ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844727

RESUMO

The contribution of Fe(II)-oxidizing bacteria to iron cycling in freshwater, groundwater, and marine environments has been widely recognized in recent years. These organisms perform extracellular electron transfer (EET), which constitutes the foundations of bioelectrochemical systems for the production of biofuels and bioenergy. It was proposed that the Gram-negative bacterium Sideroxydans lithotrophicus ES-1 oxidizes soluble ferrous Fe(II) at the surface of the cell and performs EET through the Mto redox pathway. This pathway is composed by the periplasmic monoheme cytochrome MtoD that is proposed to bridge electron transfer between the cell exterior and the cytoplasm. This makes its functional and structural characterization, as well as evaluating the interaction process with its physiological partners, essential for understanding the mechanisms underlying EET. Here, we report the complete assignment of the heme proton and carbon signals together with a near-complete assignment of 1H, 13C and 15N backbone and side chain resonances for the reduced, diamagnetic form of the protein. These data pave the way to identify and structurally map the molecular interaction regions between the cytochrome MtoD and its physiological redox partners, to explore the EET processes of S. lithotrophicus ES-1.

18.
Carbohydr Polym ; 337: 122112, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710545

RESUMO

The growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C. The incorporation of CNF into the xylan/lignosulfonates matrix provided good mechanical properties to the films (Young's modulus between 1.08 and 3.79 GPa and tensile strength between 12.75 and 14.02 MPa). The presence of lignosulfonates imparted the films with antioxidant capacity (DPPH radical scavenging activity from 71.6 to 82.4 %) and UV barrier properties (transmittance ≤19.1 % (200-400 nm)). Moreover, the films obtained are able to successfully delay the browning of packaged fruit stored over 7 days at 4 °C. Overall, the obtained results show the potential of using low-cost and eco-friendly resources for the development of sustainable active food packaging materials.


Assuntos
Celulose , Embalagem de Alimentos , Lignina , Lignina/análogos & derivados , Nanocompostos , Nanofibras , Resistência à Tração , Madeira , Xilanos , Embalagem de Alimentos/métodos , Lignina/química , Nanocompostos/química , Celulose/química , Celulose/análogos & derivados , Madeira/química , Nanofibras/química , Xilanos/química , Antioxidantes/química , Frutas/química
19.
J Inorg Biochem ; 239: 112089, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36502664

RESUMO

CISD3 is a mitochondrial protein belonging to the NEET proteins family, bearing two [Fe2S2] clusters coordinated by CDGSH domains. At variance with the other proteins of the NEET family, very little is known about its structure-function relationships. NMR is the only technique to obtain information at the atomic level in solution on the residues involved in intermolecular interactions; however, in paramagnetic proteins this is limited by the broadening of signals of residues around the paramagnetic center. Tailored experiments can revive signals of the cluster surrounding; however, signals identification without specific residue assignment remains useless. Here, we show how paramagnetic relaxation can drive the signal assignment of residues in the proximity of the paramagnetic center(s). This allowed us to identify the potential key players of the biological function of the CISD3 protein.


Assuntos
Proteínas Ferro-Enxofre , Imageamento por Ressonância Magnética , Humanos , Sítios de Ligação , Proteínas Ferro-Enxofre/química , Ligantes , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Proteínas Mitocondriais/química
20.
bioRxiv ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798275

RESUMO

Interleukin-1 receptor (IL-1R)-associated kinases (IRAKs) are core effectors of Toll-like receptor (TLR) and IL-1R signaling, with no reported roles outside of innate immunity. We find that vertebrate cells exposed to ionizing radiation (IR) sequentially activate IRAK4 and IRAK1 through a phosphorylation cascade mirroring that induced by TLR/IL-1R, resulting in a potent anti-apoptotic response. However, IR-induced IRAK1 activation does not require the receptors or the IRAK4/1 adaptor protein MyD88, and instead of remaining in the cytoplasm, the activated kinase is immediately transported to the nucleus via a conserved nuclear localization signal. We identify: double-strand DNA breaks (DSBs) as the biologic trigger for this pathway; the E3 ubiquitin ligase Pellino1 as the scaffold enabling IRAK4/1 activation in place of TLR/IL-1R-MyD88; and the pro-apoptotic PIDDosome (PIDD1-RAIDD-caspase-2) as a critical downstream target in the nucleus. The data delineate a non-canonical IRAK signaling pathway derived from, or ancestral to, TLR signaling. This DSB detection pathway, which is also activated by genotoxic chemotherapies, provides multiple actionable targets for overcoming tumor resistance to mainstay cancer treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA