Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Neurochem Res ; 42(11): 3041-3051, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28646259

RESUMO

Oxidative stress plays an important role in neurodegenerative diseases and aging. The cellular defense mechanisms to deal with oxidative damage involve the activation of transcription factor related to NF-E2 (Nrf2), which enhances the transcription of antioxidant and phase II enzyme genes. S-allylcysteine (SAC) is an antioxidant with neuroprotective properties, and the main organosulfur compound in aged garlic extract. The ability of SAC to activate the Nrf2 factor has been previously reported in hepatic cells; however this effect has not been studied in normal brain. In order to determine if the chronic administration of SAC is able to activate Nrf2 factor and enhance antioxidant defense in the brain, male Wistar rats were administered with SAC (25, 50, 100 and 200 mg/kg-body weight each 24 h, i.g.) for 90 days. The activation of Nrf2, the levels of p65 and 8-hydroxy-2-deoxyguanosine (8-OHdG) as well as the activities of the enzymes glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST) were evaluated in the hippocampus, striatum and frontal cortex. Results showed that SAC activated Nrf2 factor in the hippocampus (25-200 mg/kg) and striatum (100 mg/kg) and significantly decreased p65 levels in the frontal cortex (25-200 mg/kg). On the other hand, SAC increased GPx, GR, CAT and SOD activities mainly in the hippocampus and striatum, but it did not change GST activity. Finally, no changes were observed in 8-OHdG levels mediated by SAC in any brain region, but the hippocampus showed a major level of 8-OHdG compared with the striatum and frontal cortex. All these results suggest that in the hippocampus, the observed increase in the activity of antioxidant enzymes could be associated with the ability of SAC to activate Nrf2 factor; however, a different mechanism could be involved in the striatum and frontal cortex, since no changes were found in Nrf2 activation and p65 levels.


Assuntos
Antioxidantes/metabolismo , Corpo Estriado/metabolismo , Cisteína/análogos & derivados , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Cisteína/administração & dosagem , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Lobo Frontal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar
3.
Antioxidants (Basel) ; 8(9)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540440

RESUMO

Stroke is a public health problem due to its high mortality and disability rates; despite these, the pharmacological treatments are limited. Oxidative stress plays an important role in cerebral damage in stroke and the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) confers protection against oxidative stress. Different compounds, such as diallyl trisulfide (DATS), have the ability to activate Nrf2. DATS protects against the damage induced in oxygen-glucose deprivation in neuronal cells; however, in in vivo models of cerebral ischemia, DATS has not been evaluated. Male Wistar rats were subjected to 1 h of ischemia and seven days of reperfusion and the protective effect of DATS was evaluated. DATS administration (IR + DATS) decreased the infarct area and brain damage in the striatum and cortex; improved neurological function; decreased malondialdehyde and metalloproteinase-9 levels; increased Nrf2 activation in the cortex and the expression of superoxide dismutase 1 (SOD1) in the nucleus, SOD2 and glutathione S-transferase (GST) in the striatum and cortex; and increased the activity of catalase (CAT) in the striatum and glutathione peroxidase (GPx) in the cortex. Our results demonstrate the protective effect of DATS in an in vivo model of cerebral ischemia that involves Nrf2 activation.

4.
Antioxidants (Basel) ; 8(9)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514267

RESUMO

In the present study we investigated the participation of brain-derived neurotropic factor (BDNF) on the activation of the mitogen activated protein kinase (MAPK) protein extracellular signal-regulated kinase-1/2 (ERK1/2) as a mechanism of curcumin (CUR) to provide an antioxidant defense system mediated by the nuclear factor erythroid 2-related factor 2 (Nrf2) in the neurotoxic model induced by quinolinic acid (QUIN). Wistar rats received CUR (400 mg/kg, intragastrically) for 6 days after intrastriatal injection with QUIN (240 nmol). CUR improved the motor deficit and morphological alterations induced by QUIN and restored BDNF, ERK1/2, and Nrf2 levels. CUR treatment avoided the decrease in the protein levels of glutathione peroxidase (GPx), glutathione reductase (GR), γ-glutamylcysteine ligase (γ-GCL), and glutathione (GSH) levels. Only, the QUIN-induced decrease in the GR activity was prevented by CUR treatment. Finally, QUIN increased superoxide dismutase 2 (SOD2) and catalase (CAT) levels, and the γGCL and CAT activities; however, this increase was major in the QUIN+CUR group for γ-GCL, CAT, and SOD activities. These data suggest that the therapeutic effect of CUR could involve BDNF action on the activation of ERK1/2 to induce increased levels of protein and enzyme activity of antioxidant proteins regulated by Nrf2 and GSH levels.

5.
Free Radic Res ; 48(2): 159-67, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24147739

RESUMO

The neuroprotective properties of S-allyl cysteine (SAC) have been demonstrated in different neurotoxic paradigms, and it may be partially attributable to its antioxidant and anti-inflammatory profile. Recently, SAC has also been shown to induce neuroprotection in the rat striatum in a toxic model induced by 6-hydroxydopamine in rats through a concerted antioxidant response involving Nrf2 transcription factor nuclear transactivation and Phase 2 enzymes' upregulation. In this work, we investigated whether the SAC-induced in vivo striatal and nigral neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropiridinium (MPTP) toxicity recruits Nrf2 transactivation in C57BL/6J mice. SAC (120 mg/kg, i.p. × 5 days) partially ameliorated the MPTP (30 mg/kg, i.p. × 5 days)-induced striatal and nigral dopamine and tyrosine hydroxylase depletion, attenuated the loss of Mn-SOD and HO-1 activities, and preserved the protein content of these enzymes. While no significant changes were detected for the striatal Nrf2 nuclear protein levels, the nigral Nrf2 nuclear content was decreased by MPTP and stimulated by SAC. Our findings suggest that SAC can exert neuroprotection since the origin of the dopaminergic lesion-at the substantia nigra (SN)-not only by means of direct antioxidant actions, but also through Nrf2 nuclear transactivation and Phase 2 enzymes upregulation.


Assuntos
Corpo Estriado/efeitos dos fármacos , Cisteína/análogos & derivados , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Núcleo Celular/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Cisteína/farmacologia , Cisteína/uso terapêutico , Dopamina/metabolismo , Avaliação Pré-Clínica de Medicamentos , Heme Oxigenase-1/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/metabolismo , Substância Negra/metabolismo , Substância Negra/patologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Oxid Med Cell Longev ; 2012: 907162, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685624

RESUMO

Aged garlic extract (AGE) is an odorless garlic preparation containing S-allylcysteine (SAC) as its most abundant compound. A large number of studies have demonstrated the antioxidant activity of AGE and SAC in both in vivo--in diverse experimental animal models associated to oxidative stress--and in vitro conditions--using several methods to scavenge reactive oxygen species or to induce oxidative damage. Derived from these experiments, the protective effects of AGE and SAC have been associated with the prevention or amelioration of oxidative stress. In this work, we reviewed different antioxidant mechanisms (scavenging of free radicals and prooxidant species, induction of antioxidant enzymes, activation of Nrf2 factor, inhibition of prooxidant enzymes, and chelating effects) involved in the protective actions of AGE and SAC, thereby emphasizing their potential use as therapeutic agents. In addition, we highlight the ability of SAC to activate Nrf2 factor--a master regulator of the cellular redox state. Here, we include original data showing the ability of SAC to activate Nrf2 factor in cerebral cortex. Therefore, we conclude that the therapeutic properties of these molecules comprise cellular and molecular mechanisms at different levels.


Assuntos
Antioxidantes/farmacologia , Cisteína/análogos & derivados , Alho/química , Extratos Vegetais/farmacologia , Animais , Cisteína/química , Cisteína/farmacocinética , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA