Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 269: 115758, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128448

RESUMO

Aminolysis is widely recognized as a valuable chemical route for depolymerizing polymeric materials containing ester, amide, or urethane functional groups, including polyurethane foams. Bio-based polyurethane foams, pristine and reinforced with 40 wt% of sustainable fillers, were depolymerized in the presence of bio-derived butane-1,4-diamine, BDA. A process comparison was made using fossil-derived ethane-1,2-diamine, EDA, by varying amine/polyurethane ratio (F/A, 1:1 and 1:0.6). The obtained depolymerized systems were analyzed by FTIR and NMR characterizations to understand the effect of both diamines on the degradation pathway. The use of bio-based BDA seemed to be more effective with respect to conventional EDA, owing to its stronger basicity (and thus higher nucleophilicity), corresponding to faster depolymerization rates. BDA-based depolymerized systems were then employed to prepare second-generation bio-based composite polyurethane foams by partial replacement of isocyanate components (20 wt%). The morphological, mechanical, and thermal conductivity properties of the second-generation polyurethane foams were evaluated. The best performances (σ10 %=71 ± 9 kPa, λ = 0.042 ± 0.015 W∙ m-1 ∙K-1) were attained by employing the lowest F/A ratio (1:0.6); this demonstrates their potential application in different sectors such as packaging or construction, fulfilling the paradigm of the circular economy.


Assuntos
Diaminas , Poliuretanos , Aminas , Isocianatos , Amidas , Ésteres
2.
Polymers (Basel) ; 15(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37447447

RESUMO

Polyesters with a high glass transition temperature above 130 °C were obtained from limonene oxide (LO) or vinylcyclohexene oxide (VCHO) and phthalic anhydride (PA) in the presence of commercial salen-type complexes with different metals-Cr, Al, and Mn-as catalysts in combination with 4-(dimethylamino) pyridine (DMAP), bis-(triphenylphosphorydine) ammonium chloride (PPNCl), and bis-(triphenylphosphoranylidene)ammonium azide (PPNN3) as cocatalysts via alternating ring-opening copolymerization (ROCOP). The effects of the time of precontact between the catalyst and cocatalyst and the polymerization time on the productivity, molar mass (Mw), and glass transition temperature (Tg) were evaluated. The polyesters were characterized by a molar mass (Mw) of up to 14.0 kg/mol, a narrow dispersity Tg of up to 136 °C, and low (<3 mol%) polyether units. For poly(LO-alt-PA) copolymers, biodegradation tests were performed according to ISO 14851 using the respirometric biochemical oxygen demand method. Moreover, the vinyl double bond present in the poly(LO-alt-PA) copolymer chain was functionalized using three different thiols, methyl-3-mercaptopropionate, isooctyl-3-mercaptopropionate, and butyl-3-mercaptopropionate, via a click chemistry reaction. The thermal properties of poly(LO-alt-PA), poly(VCHO-alt-PA) and thiol-modified poly(LO-alt-PA) copolymers were extensively studied by DSC and TGA. Some preliminary compression molding tests were also conducted.

3.
Polymers (Basel) ; 15(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36850207

RESUMO

Currently, the scientific community has spent a lot of effort in developing "green" and environmentally friendly processes and products, due the contemporary problems connected to pollution and climate change. Cellulose nanocrystals (CNCs) are at the forefront of current research due to their multifunctional characteristics of biocompatibility, high mechanical properties, specific surface area, tunable surface chemistry and renewability. However, despite these many advantages, their inherent hydrophilicity poses a substantial challenge for the application of CNCs as a reinforcing filler in polymers, as it complicates their dispersion in hydrophobic polymeric matrices, such as polyurethane foams, often resulting in aggregate structures that compromise their properties. The manipulation and fine-tuning of the interfacial properties of CNCs is a crucial step to exploit their full potential in the development of new materials. In this respect, starting from an aqueous dispersion of CNCs, two different strategies were used to properly functionalize fillers: (i) freeze drying, solubilization in DMA/LiCl media and subsequent grafting with bio-based polyols; (ii) solvent exchange and subsequent grafting with bio-based polyols. The influence of the two functionalization methods on the chemical and thermal properties of CNCs was examined. In both cases, the role of the two bio-based polyols on filler functionalization was elucidated. Afterwards, the functionalized CNCs were used at 5 wt% to produce bio-based composite polyurethane foams and their effect on the morphological, thermal and mechanical properties was examined. It was found that CNCs modified through freeze drying, solubilization and bio-polyols grafting exhibited remarkably higher thermal stability (i.e., degradation stages > 100 °C) with respect to the unmodified freeze dried-CNCs. In addition, the use of the two grafting bio-polyols influenced the functionalization process, corresponding to different amount of grafted-silane-polyol and leading to different chemico-physical characteristics of the obtained CNCs. This was translated to higher thermal stability as well as improved functional and mechanical performances of the produced bio-based composite PUR foams with respect of the unmodified CNCs-composite ones (the best case attained compressive strength values three times more). Solvent exchange route slightly improved the thermal stability of the obtained CNCs; however; the so-obtained CNCs could not be properly dispersed within the polyurethane matrix, due to filler aggregation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA