Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37108131

RESUMO

Alzheimer's disease (AD), which predominantly affects women, involves at its onset a metabolic deregulation associated with a synaptic failure. Here, we performed a behavioral, neurophysiological and neurochemical characterization of 9-month-old female APPswe/PS1dE9 (APP/PS1) mice as a model of early AD. These animals showed learning and memory deficits in the Morris water maze, increased thigmotaxis and anxiety-like behavior and showed signs of fear generalization. Long-term potentiation (LTP) was decreased in the prefrontal cortex (PFC), but not in the CA1 hippocampus or amygdala. This was associated with a decreased density of sirtuin-1 in cerebrocortical synaptosomes and a decreased density of sirtuin-1 and sestrin-2 in total cerebrocortical extracts, without alterations of sirtuin-3 levels or of synaptic markers (syntaxin, synaptophysin, SNAP25, PSD95). However, activation of sirtuin-1 did not affect or recover PFC-LTP deficit in APP/PS1 female mice; instead, inhibition of sirtuin-1 increased PFC-LTP magnitude. It is concluded that mood and memory dysfunction in 9-month-old female APP/PS1 mice is associated with a parallel decrease in synaptic plasticity and in synaptic sirtuin-1 levels in the prefrontal cortex, although sirtiun1 activation failed to restore abnormal cortical plasticity.


Assuntos
Doença de Alzheimer , Córtex Pré-Frontal , Sirtuína 1 , Animais , Feminino , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto , Camundongos Transgênicos , Córtex Pré-Frontal/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
2.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361618

RESUMO

Adenosine A2A receptors (A2AR) control fear memory and the underlying processes of synaptic plasticity in the amygdala. In other brain regions, A2AR activation is ensured by ATP-derived extracellular adenosine formed by ecto-5'-nucleotidase or CD73. We now tested whether CD73 is also responsible to provide for the activation of A2AR in controlling fear memory and amygdala long-term potentiation (LTP). The bilateral intracerebroventricular injection of the CD73 inhibitor αß-methylene ADP (AOPCP, 1 nmol/ventricle/day) phenocopied the effect of the A2AR blockade by decreasing the expression of fear memory, an effect disappearing in CD73-knockout (KO) mice and in forebrain neuronal A2AR-KO mice. In the presence of PPADS (20 µM) to eliminate any modification of ATP/ADP-mediated P2 receptor effects, both AOPCP (100 µM) and the A2AR antagonist, SCH58261 (50 nM), decreased LTP magnitude in synapses of projection from the external capsula into the lateral amygdala, an effect eliminated in slices from both forebrain neuronal A2AR-KO mice and CD73-KO mice. These data indicate a key role of CD73 in the process of A2AR-mediated control of fear memory and underlying synaptic plasticity processes in the amygdala, paving the way to envisage CD73 as a new therapeutic target to interfere with abnormal fear-like emotional processing.


Assuntos
5'-Nucleotidase , Receptor A2A de Adenosina , Camundongos , Animais , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Adenosina/metabolismo , Camundongos Endogâmicos C57BL , Tonsila do Cerebelo/metabolismo , Camundongos Knockout , Medo/fisiologia , Difosfato de Adenosina , Trifosfato de Adenosina/metabolismo
3.
Pharmacol Res ; 162: 105253, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33080321

RESUMO

This review discusses the evidence supporting a role for ATP signaling (operated by P2X and P2Y receptors) and adenosine signaling (mainly operated by A1 and A2A receptors) in the crosstalk between neurons, astrocytes, microglia and oligodendrocytes. An initial emphasis will be given to the cooperation between adenosine receptors to sharpen information salience encoding across synapses. The interplay between ATP and adenosine signaling in the communication between astrocytes and neurons will then be presented in context of the integrative properties of the astrocytic syncytium, allowing to implement heterosynaptic depression processes in neuronal networks. The process of microglia 'activation' and its control by astrocytes and neurons will then be analyzed under the perspective of an interplay between different P2 receptors and adenosine A2A receptors. In spite of these indications of a prominent role of purinergic signaling in the bidirectional communication between neurons and glia, its therapeutical exploitation still awaits obtaining an integrated view of the spatio-temporal action of ATP signaling and adenosine signaling, clearly distinguishing the involvement of both purinergic signaling systems in the regulation of physiological processes and in the control of pathogenic-like responses upon brain dysfunction or damage.


Assuntos
Trifosfato de Adenosina/metabolismo , Comunicação Celular , Neuroglia/fisiologia , Neurônios/fisiologia , Animais , Humanos , Transdução de Sinais
4.
Eur J Neurosci ; 47(9): 1127-1134, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29570875

RESUMO

Prefrontal cortex (PFC) circuits are modulated by dopamine acting on D1 - and D2 -like receptors, which are pharmacologically exploited to manage neuropsychiatric conditions. Adenosine A2A receptors (A2A R) also control PFC-related responses and A2A R antagonists are potential anti-psychotic drugs. As tight antagonistic A2A R-D2 R and synergistic A2A R-D1 R interactions occur in other brain regions, we now investigated the crosstalk between A2A R and D1 /D2 R controlling synaptic transmission between layers II/III and V in mouse PFC coronal slices. Dopamine decreased synaptic transmission, a presynaptic effect based on the parallel increase in paired-pulse responses. Dopamine inhibition was prevented by the D2 R-like antagonist sulpiride but not by the D1 R antagonist SCH23390 and was mimicked by the D2 R agonist sumanirole, but not by the agonists of either D4 R (A-412997) or D3 R (PD128907). Dopamine inhibition was prevented by the A2A R antagonist, SCH58261, and attenuated in A2A R knockout mice. Accordingly, triple-labelling immunocytochemistry experiments revealed the co-localization of A2A R and D2 R immunoreactivity in glutamatergic (vGluT1-positive) nerve terminals of the PFC. This reported positive A2A R-D2 R interaction controlling PFC synaptic transmission provides a mechanistic justification for the anti-psychotic potential of A2A R antagonists.


Assuntos
Agonistas de Dopamina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Receptor A2A de Adenosina/efeitos dos fármacos , Receptores de Dopamina D2/efeitos dos fármacos , Adenosina/farmacologia , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/farmacologia , Ácido Glutâmico/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Transmissão Sináptica/fisiologia
5.
Eur J Neurosci ; 39(4): 614-22, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24304101

RESUMO

ATP is a pleiotropic cell-to-cell signaling molecule in the brain that functions through activation of the P2 receptors (P2R), encompassing ionotropic P2XR or metabotropic P2YR. Noxious brain insults increase the extracellular levels of ATP and previous studies have implicated different P2R, namely P2Y1R, in the control of ischemic brain damage, but it remains to be defined if P2Y1R antagonists also alleviate the behavioral impairments associated with brain ischemia. Furthermore, as P2Y1R can control neuronal and glial functions, we explored if P2Y1R antagonist-mediated protection would mainly involve neuronal and/or glial processes. Adult male mice subject to permanent middle cerebral artery occlusion (pMCAO) displayed an infarcted cortical area (2,3,5-triphenyltetrazolium chloride staining), decreased neurological score with decreased working and reference memory performance (Y-maze, object recognition and aversive memory), accompanied by neuronal damage (FluoroJade C), astrogliosis (glial fibrillary acidic protein) and microgliosis (CD11b). All of these changes were attenuated by intracerebroventricular pre-treatment (10 min before pMCAO) with the generic P2R antagonist 4-[(E)-{4-formyl-5-hydroxy-6-methyl-3-[(phosphono-oxy)methyl]pyridin-2-yl}diazenyl]benzene-1,3-disulfonic acid (PPADS, 0.5-1.0 nmol/µL). In contrast, the selective P2Y1R antagonist (1R*,2S*)-4-[2-Iodo-6-(methylamino)-9H-purin-9-yl]-2-(phosphono-oxy)bicycle[3.1.0] hexane-1-methanol dihydrogen phosphate ester (MRS2500, 1.0-2.0 nmol/µL) afforded equivalent behavioral benefits but only prevented neuronal damage but not astrogliosis or microgliosis upon pMCAO. These results indicated that P2Y1R-associated neuroprotection mainly occurred through neuronal mechanisms, whereas other P2R were also involved in the control of astrocytic reactivity upon brain injury.


Assuntos
Astrócitos/metabolismo , Cognição , Infarto da Artéria Cerebral Média/metabolismo , Neurônios/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Animais , Astrócitos/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Nucleotídeos de Desoxiadenina/farmacologia , Nucleotídeos de Desoxiadenina/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Aprendizagem em Labirinto , Memória , Camundongos , Neurônios/patologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Fosfato de Piridoxal/uso terapêutico
6.
ACS Chem Neurosci ; 14(7): 1299-1309, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36881648

RESUMO

Increased ATP release and its extracellular catabolism through CD73 (ecto-5'-nucleotidase) lead to the overactivation of adenosine A2A receptors (A2AR), which occurs in different brain disorders. A2AR blockade blunts mood and memory dysfunction caused by repeated stress, but it is unknown if increased ATP release coupled to CD73-mediated formation of extracellular adenosine is responsible for A2AR overactivation upon repeated stress. This was now investigated in adult rats subject to repeated stress for 14 consecutive days. Frontocortical and hippocampal synaptosomes from stressed rats displayed an increased release of ATP upon depolarization, coupled to an increased density of vesicular nucleotide transporters and of CD73. The continuous intracerebroventricular delivery of the CD73 inhibitor α,ß-methylene ADP (AOPCP, 100 µM) during restraint stress attenuated mood and memory dysfunction. Slice electrophysiological recordings showed that restraint stress decreased long-term potentiation both in prefrontocortical layer II/III-layer V synapses and in hippocampal Schaffer fibers-CA1 pyramid synapses, which was prevented by AOPCP, an effect occluded by adenosine deaminase and by the A2AR antagonist SCH58261. These results indicate that increased synaptic ATP release coupled to CD73-mediated formation of extracellular adenosine contributes to mood and memory dysfunction triggered by repeated restraint stress. This prompts considering interventions decreasing ATP release and CD73 activity as novel strategies to mitigate the burden of repeated stress.


Assuntos
5'-Nucleotidase , Adenosina , Animais , Ratos , 5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Sinapses/metabolismo , Sinaptossomos/metabolismo , Estresse Fisiológico , Fenômenos Eletrofisiológicos
7.
Biomolecules ; 13(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36671491

RESUMO

Adenosine receptors mainly control synaptic function, and excessive activation of adenosine receptors may worsen the onset of many neurological disorders. Accordingly, the regular intake of moderate doses of caffeine antagonizes adenosine receptors and affords robust neuroprotection. Although caffeine intake alters brain functional connectivity and multi-omics analyses indicate that caffeine intake modifies synaptic and metabolic processes, it is unclear how caffeine intake affects behavior, synaptic plasticity and its modulation by adenosine. We now report that male mice drinking caffeinated water (0.3 g/L) for 2 weeks were behaviorally indistinguishable (locomotion, mood, memory) from control mice (drinking water) and displayed superimposable synaptic plasticity (long-term potentiation) in different brain areas (hippocampus, prefrontal cortex, amygdala). Moreover, there was a general preservation of the efficiency of adenosine A1 and A2A receptors to control synaptic transmission and plasticity, although there was a tendency for lower levels of endogenous adenosine ensuring A1 receptor-mediated inhibition. In spite of similar behavioral and neurophysiological function, caffeine intake increased the energy charge and redox state of cortical synaptosomes. This increased metabolic competence likely involved a putative increase in the glycolytic rate in synapses and a prospective greater astrocyte-synapse lactate shuttling. It was concluded that caffeine intake does not trigger evident alterations of behavior or of synaptic plasticity but increases the metabolic competence of synapses, which might be related with the previously described better ability of animals consuming caffeine to cope with deleterious stimuli triggering brain dysfunction.


Assuntos
Adenosina , Cafeína , Masculino , Camundongos , Animais , Cafeína/farmacologia , Adenosina/farmacologia , Adenosina/metabolismo , Estudos Prospectivos , Receptores Purinérgicos P1/metabolismo , Hipocampo/metabolismo
8.
J Neuroinflammation ; 9: 204, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22901528

RESUMO

BACKGROUND AND PURPOSE: Blockade of adenosine A(2A) receptors (A(2A)R) affords robust neuroprotection in a number of brain conditions, although the mechanisms are still unknown. A likely candidate mechanism for this neuroprotection is the control of neuroinflammation, which contributes to the amplification of neurodegeneration, mainly through the abnormal release of pro-inflammatory cytokines such as interleukin(IL)-1ß. We investigated whether A(2A)R controls the signaling of IL-1ß and its deleterious effects in cultured hippocampal neurons. METHODS: Hippocampal neuronal cultures were treated with IL-1ß and/or glutamate in the presence or absence of the selective A(2A)R antagonist, SCH58261 (50 nmol/l). The effect of SCH58261 on the IL-1ß-induced phosphorylation of the mitogen-activated protein kinases (MAPKs) c-Jun N-terminal kinase (JNK) and p38 was evaluated by western blotting and immunocytochemistry. The effect of SCH58261 on glutamate-induced neurodegeneration in the presence or absence of IL-1ß was evaluated by nucleic acid and by propidium iodide staining, and by lactate dehydrogenase assay. Finally, the effect of A(2A)R blockade on glutamate-induced intracellular calcium, in the presence or absence of IL-1ß, was studied using single-cell calcium imaging. RESULTS: IL-1ß (10 to 100 ng/ml) enhanced both JNK and p38 phosphorylation, and these effects were prevented by the IL-1 type 1 receptor antagonist IL-1Ra (5 µg/ml), in accordance with the neuronal localization of IL-1 type 1 receptors, including pre-synaptically and post-synaptically. At 100 ng/ml, IL-1ß failed to affect neuronal viability but exacerbated the neurotoxicity induced by treatment with 100 µmol/l glutamate for 25 minutes (evaluated after 24 hours). It is likely that this resulted from the ability of IL-1ß to enhance glutamate-induced calcium entry and late calcium deregulation, both of which were unaffected by IL-1ß alone. The selective A(2A)R antagonist, SCH58261 (50 nmol/l), prevented both the IL-1ß-induced phosphorylation of JNK and p38, as well as the IL-1ß-induced deregulation of calcium and the consequent enhanced neurotoxicity, whereas it had no effect on glutamate actions. CONCLUSIONS: These results prompt the hypothesis that the neuroprotection afforded by A(2A)R blockade might result from this particular ability of A(2A)R to control IL-1ß-induced exacerbation of excitotoxic neuronal damage, through the control of MAPK activation and late calcium deregulation.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Interleucina-1beta/toxicidade , Sistema de Sinalização das MAP Quinases/fisiologia , Neurônios/metabolismo , Receptor A2A de Adenosina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Células Cultivadas , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Gravidez , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Triazóis/farmacologia
9.
J Neurochem ; 117(1): 100-11, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21235574

RESUMO

The blockade of adenosine A(2A) receptors (A2AR) affords a robust neuroprotection in different noxious brain conditions. However, the mechanisms underlying this general neuroprotection are unknown. One possible mechanism could be the control of neuroinflammation that is associated with brain damage, especially because A2AR efficiently control peripheral inflammation. Thus, we tested if the intracerebroventricular injection of a selective A2AR antagonist (SCH58261) would attenuate the changes in the hippocampus triggered by intraperitoneal administration of lipopolysaccharide (LPS) that induces neuroinflammation through microglia activation. LPS administration triggers an increase in inflammatory mediators like interleukin-1ß that causes biochemical changes (p38 and c-jun N-terminal kinase phosphorylation and caspase 3 activation) contributing to neuronal dysfunction typified by decreased long-term potentiation, a form of synaptic plasticity. Long-term potentiation, measured 30 min after the tetanus, was significantly lower in LPS-treated rats compared with control-treated rats, while SCH58261 attenuated the LPS-induced change. The LPS-induced increases in phosphorylation of c-jun N-terminal kinase and p38 and activation of caspase 3 were also prevented by SCH58261. Significantly, SCH58261 also prevented the LPS-induced recruitment of activated microglial cells and the increase in interleukin-1ß concentration in the hippocampus, indicating that A2AR activation is a pivotal step in mediating the neuroinflammation triggered by LPS. These results indicate that A2AR antagonists prevent neuroinflammation and support the hypothesis that this mechanism might contribute for the ability of A2AR antagonists to control different neurodegenerative diseases known to involve neuroinflammation.


Assuntos
Hipocampo/patologia , Mediadores da Inflamação/fisiologia , Inibição Neural/fisiologia , Neurônios/patologia , Receptor A2A de Adenosina/fisiologia , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/fisiologia , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Receptor A2A de Adenosina/metabolismo , Resorcinóis/farmacologia , Resorcinóis/uso terapêutico , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia
10.
ScientificWorldJournal ; 9: 1321-44, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19936569

RESUMO

Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel antiparkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional, functionally significant, segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological, and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of corticostriatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders.


Assuntos
Gânglios da Base/fisiologia , Córtex Cerebral/fisiologia , Corpo Estriado/fisiologia , Receptor A2A de Adenosina/fisiologia , Transmissão Sináptica/fisiologia , Antagonistas do Receptor A2 de Adenosina , Animais , Benzazepinas/farmacologia , Corpo Estriado/ultraestrutura , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/metabolismo , Técnicas Imunoenzimáticas , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Terminações Pré-Sinápticas , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptor A2A de Adenosina/imunologia , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D2/fisiologia , Sinaptossomos/fisiologia , Xantinas/farmacologia
11.
eNeuro ; 5(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627646

RESUMO

Neurodegeneration is a process transversal to neuropsychiatric diseases and the understanding of its mechanisms should allow devising strategies to prevent this irreversible step in brain diseases. Neurodegeneration caused by seizures is a critical step in the aggravation of temporal lobe epilepsy, but its mechanisms remain undetermined. Convulsions trigger an elevation of extracellular adenosine and upregulate adenosine A2A receptors (A2AR), which have been associated with the control of neurodegenerative diseases. Using the rat and mouse kainate model of temporal lobe epilepsy, we now tested whether A2AR control convulsions-induced hippocampal neurodegeneration. The pharmacological or genetic blockade of A2AR did not affect kainate-induced convulsions but dampened the subsequent neurotoxicity. This neurotoxicity began with a rapid A2AR upregulation within glutamatergic synapses (within 2 h), through local translation of synaptic A2AR mRNA. This bolstered A2AR-mediated facilitation of glutamate release and of long-term potentiation (LTP) in CA1 synapses (4 h), triggered a subsequent synaptotoxicity, heralded by decreased synaptic plasticity and loss of synaptic markers coupled to calpain activation (12 h), that predated overt neuronal loss (24 h). All modifications were prevented by the deletion of A2AR selectively in forebrain neurons. This shows that synaptic A2AR critically control synaptic excitotoxicity, which underlies the development of convulsions-induced neurodegeneration.


Assuntos
Convulsivantes/toxicidade , Ácido Caínico/toxicidade , Degeneração Neural/etiologia , Degeneração Neural/metabolismo , Neurônios/metabolismo , Receptor A2A de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Tonsila do Cerebelo/fisiologia , Animais , Células Cultivadas , Epilepsia/complicações , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Excitação Neurológica/efeitos dos fármacos , Excitação Neurológica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/prevenção & controle , Neurônios/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Pirimidinas/uso terapêutico , Ratos , Ratos Wistar , Receptor A2A de Adenosina/genética , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Triazóis/uso terapêutico
12.
Mol Neurobiol ; 54(2): 1552-1563, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26860412

RESUMO

Caffeine prophylactically prevents mood and memory impairments through adenosine A2A receptor (A2AR) antagonism. A2AR antagonists also therapeutically revert mood and memory impairments, but it is not known if caffeine is also therapeutically or only prophylactically effective. Since depression is accompanied by mood and memory alterations, we now explored if chronic (4 weeks) caffeine consumption (0.3 g/L) reverts mood and memory impairment in helpless mice (HM, 12 weeks old), a bred-based model of depression. HM displayed higher immobility in the tail suspension and forced swimming tests, greater anxiety in the elevated plus maze, and poorer memory performance (modified Y-maze and object recognition). HM also had reduced density of synaptic (synaptophysin, SNAP-25), namely, glutamatergic (vGluT1; -22 ± 7 %) and GABAergic (vGAT; -23 ± 8 %) markers in the hippocampus. HM displayed higher A2AR density (72 ± 6 %) in hippocampal synapses, an enhanced facilitation of hippocampal glutamate release by the A2AR agonist, CGS21680 (30 nM), and a larger LTP amplitude (54 ± 8 % vs. 21 ± 5 % in controls) that was restored to control levels (30 ± 10 %) by the A2AR antagonist, SCH58261 (50 nM). Notably, caffeine intake reverted memory deficits and reverted the loss of hippocampal synaptic markers but did not affect helpless or anxiety behavior. These results reinforce the validity of HM as an animal model of depression by showing that they also display reference memory deficits. Furthermore, caffeine intake selectively reverted memory but not mood deficits displayed by HM, which are associated with an increased density and functional impact of hippocampal A2AR controlling synaptic glutamatergic function.


Assuntos
Cafeína/uso terapêutico , Depressão/metabolismo , Ácido Glutâmico/metabolismo , Transtornos da Memória/metabolismo , Transtornos do Humor/metabolismo , Receptor A2A de Adenosina/biossíntese , Animais , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/uso terapêutico , Depressão/tratamento farmacológico , Depressão/psicologia , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/psicologia , Camundongos , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/psicologia , Especificidade da Espécie , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
13.
Int J Food Microbiol ; 112(3): 208-14, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17046092

RESUMO

In order to understand the virulence potential of dairy enterococci, 35 isolates from raw ewe's milk and traditionally fermented cheeses, identified as Enterococcus faecalis, Enterococcus faecium, Enterococcus durans, Enterococcus dispar and Enterococcus hirae, were screened for their capacity to produce gelatinase and for the presence of the genes gelE, sprE, fsrA, fsrB and fsrC. Studies correlating gelatinase production with maintenance and subculture of the isolates in the Laboratory environment, and growth in different media were performed. These studies were conducted with two dairy isolates identified as E. faecalis and E. durans, and one clinical isolate, E. faecalis OG1-10. RT-PCR was used for detection of transcripts of the above mentioned genes. Results demonstrated that the virulence factor gelatinase is disseminated among the genus Enterococcus and that dairy isolates are capable of producing gelatinase at comparable levels with clinical isolates, although this capacity is easily lost during conservation by freezing in the laboratory. Therefore, gelatinase production potential of dairy enterococci may be underestimated. The gene gelE was present in all studied isolates. The same was observed for the fsr operon, either complete or incomplete, revealing that the gelatinase genetic determinants, so far only described in E. faecalis, are a common trait in the genus. This work describes for the first time the detection of the complete Fsr-GelE operon in other species than E. faecalis, namely E. faecium and E. durans. The loss of expression of this virulence factor under laboratory culture conditions correlated with the loss of one or more genes of the regulatory fsr operon, although the gene gelE was maintained, demonstrating that a complete fsr operon is required for a positive GelE phenotype. Independent of the detection of any gelatinase activity, if both gelE and the complete fsr operon are present in the cell, all genes are transcribed, as revealed by RT-PCR, suggesting that regulation of gelatinase activity can also be post-transcriptional. The silent behavior of gelE was only observed in E. faecalis, but not in E. durans, suggesting different modulation mechanisms of gelatinase activity in these two species. Overall, these findings reopen the issue of food safety of enterococci and reinforce the need to further study the mechanisms responsible for triggering the virulence factor gelatinase in non-pathogenic enterococcal environmental isolates.


Assuntos
Enterococcus , Contaminação de Alimentos/análise , Gelatinases/genética , Gelatinases/metabolismo , Leite/microbiologia , Animais , Sequência de Bases , Qualidade de Produtos para o Consumidor , DNA Bacteriano/química , DNA Bacteriano/genética , Enterococcus/enzimologia , Enterococcus/genética , Enterococcus/patogenicidade , Microbiologia de Alimentos , Dados de Sequência Molecular , Óperon , Filogenia , Ovinos , Especificidade da Espécie , Virulência/genética
14.
Neuropsychopharmacology ; 41(12): 2862-2871, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27312408

RESUMO

The consumption of caffeine modulates working and reference memory through the antagonism of adenosine A2A receptors (A2ARs) controlling synaptic plasticity processes in hippocampal excitatory synapses. Fear memory essentially involves plastic changes in amygdala circuits. However, it is unknown if A2ARs in the amygdala regulate synaptic plasticity and fear memory. We report that A2ARs in the amygdala are enriched in synapses and located to glutamatergic synapses, where they selectively control synaptic plasticity rather than synaptic transmission at a major afferent pathway to the amygdala. Notably, the downregulation of A2ARs selectively in the basolateral complex of the amygdala, using a lentivirus with a silencing shRNA (small hairpin RNA targeting A2AR (shA2AR)), impaired fear acquisition as well as Pavlovian fear retrieval. This is probably associated with the upregulation and gain of function of A2ARs in the amygdala after fear acquisition. The importance of A2ARs to control fear memory was further confirmed by the ability of SCH58261 (0.1 mg/kg; A2AR antagonist), caffeine (5 mg/kg), but not DPCPX (0.5 mg/kg; A1R antagonist), treatment for 7 days before fear conditioning onwards, to attenuate the retrieval of context fear after 24-48 h and after 7-8 days. These results demonstrate that amygdala A2ARs control fear memory and the underlying process of synaptic plasticity in this brain region. This provides a neurophysiological basis for the association between A2AR polymorphisms and phobia or panic attacks in humans and prompts a therapeutic interest in A2ARs to manage fear-related pathologies.


Assuntos
Tonsila do Cerebelo/metabolismo , Memória/fisiologia , Receptor A2A de Adenosina/metabolismo , Transmissão Sináptica/fisiologia , Estimulação Acústica/efeitos adversos , Antagonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/toxicidade , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/toxicidade , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Medo/efeitos dos fármacos , Medo/fisiologia , Locomoção/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Pirimidinas/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Triazinas/farmacologia , Triazóis/farmacologia , Xantinas/farmacologia
15.
Neuropharmacology ; 76 Pt A: 51-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24029236

RESUMO

Alzheimer's disease (AD) is characterized phenotypically by memory impairment, neurochemically by accumulation of ß-amyloid peptide (such as Aß1-42) and morphologically by an initial loss of nerve terminals in cortical and hippocampal regions. However, it is not known what nerve terminals are mostly affected in early AD. We now used a mouse model of AD, based on the intra-cerebral administration of soluble Aß1-42, that leads to memory impairment and loss of nerve terminal markers within 2 weeks, to investigate which type of hippocampal nerve terminals was mostly affected in the hippocampus. Western blot analysis revealed a decrease of the density of vesicular glutamate transporters type 1 (vGluT1, a marker of glutamatergic terminals; -20.1 ± 3.6%) and of vesicular acetylcholine transporters (vAChT, a marker of cholinergic terminals; -27.2 ± 0.9%) but not of vesicular GABA transporters (vGAT, a marker of GABAergic terminals) in the hippocampus of Aß-injected mice. Immunocytochemical analysis of single hippocampal nerve terminals revealed that the decrease of the density of vGluT1 reflects a reduction of the number of vGluT1-immunopositive nerve terminals (-10.6 ± 3.6%), while no significant changes in the number of vAChT- or vGAT-immunopositive nerve terminals were observed. This pilot study shows that, in this Aß-based model of AD, there is an asymmetric loss of different synaptic markers with a predominant susceptibility of glutamatergic synapses. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Doença de Alzheimer/induzido quimicamente , Peptídeos beta-Amiloides/administração & dosagem , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Microinjeções , Fragmentos de Peptídeos/administração & dosagem , Projetos Piloto , Terminações Pré-Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA