Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Ther ; 26(4): 996-1007, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29503203

RESUMO

The use of T cell receptor (TCR) gene-modified T cells in adoptive cell transfer has had promising clinical success, but often, simple preclinical evaluation does not necessarily accurately predict treatment efficacy or safety. Preclinical studies generally evaluate one or a limited number of type 1 cytokines to assess antigen recognition. However, recent studies have implicated other "typed" T cells in effective anti-tumor/viral immunity, and limited functional evaluations may underestimate cross-reactivity. In this study, we use an altered peptide ligand (APL) model and multi-dimensional flow cytometry to evaluate polyfunctionality of TCR gene-modified T cells. Evaluating six cytokines and the lytic marker CD107a on a per cell basis revealed remarkably diverse polyfunctional phenotypes within a single T cell culture and among peripheral blood lymphocyte (PBL) donors. This polyfunctional assessment identified unexpected phenotypes, including cells producing both type 1 and type 2 cytokines, and highlighted interferon γneg (IFNγneg) antigen-reactive populations overlooked in our previous studies. Additionally, APLs skewed functional phenotypes to be less polyfunctional, which was not necessarily related to changes in TCR-peptide-major histocompatibility complex (pMHC) affinity. A better understanding of gene-modified T cell functional diversity may help identify optimal therapeutic phenotypes, predict clinical responses, anticipate off-target recognition, and improve the design and delivery of TCR gene-modified T cells.


Assuntos
Peptídeos/metabolismo , Fenótipo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Biomarcadores , Células Cultivadas , Citocinas/metabolismo , Citotoxicidade Imunológica , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/imunologia , Antígenos de Histocompatibilidade/metabolismo , Humanos , Imunofenotipagem , Imunoterapia Adotiva/métodos , Ligantes , Ativação Linfocitária , Modelos Moleculares , Peptídeos/química , Ligação Proteica , Conformação Proteica , Receptores de Antígenos de Linfócitos T/química , Relação Estrutura-Atividade , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
2.
Cancer Immunol Immunother ; 66(11): 1411-1424, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28634816

RESUMO

T-cell receptor (TCR)-pMHC affinity has been generally accepted to be the most important factor dictating antigen recognition in gene-modified T-cells. As such, there is great interest in optimizing TCR-based immunotherapies by enhancing TCR affinity to augment the therapeutic benefit of TCR gene-modified T-cells in cancer patients. However, recent clinical trials using affinity-enhanced TCRs in adoptive cell transfer (ACT) have observed unintended and serious adverse events, including death, attributed to unpredicted off-tumor or off-target cross-reactivity. It is critical to re-evaluate the importance of other biophysical, structural, or cellular factors that drive the reactivity of TCR gene-modified T-cells. Using a model for altered antigen recognition, we determined how TCR-pMHC affinity influenced the reactivity of hepatitis C virus (HCV) TCR gene-modified T-cells against a panel of naturally occurring HCV peptides and HCV-expressing tumor targets. The impact of other factors, such as TCR-pMHC stabilization and signaling contributions by the CD8 co-receptor, as well as antigen and TCR density were also evaluated. We found that changes in TCR-pMHC affinity did not always predict or dictate IFNγ release or degranulation by TCR gene-modified T-cells, suggesting that less emphasis might need to be placed on TCR-pMHC affinity as a means of predicting or augmenting the therapeutic potential of TCR gene-modified T-cells used in ACT. A more complete understanding of antigen recognition by gene-modified T-cells and a more rational approach to improve the design and implementation of novel TCR-based immunotherapies is necessary to enhance efficacy and maximize safety in patients.


Assuntos
Transferência Adotiva/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Animais , Ligação Competitiva/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Citometria de Fluxo , Células HEK293 , Células Hep G2 , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Células Jurkat , Camundongos , Peptídeos/genética , Peptídeos/imunologia , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo
3.
Cancer Immunol Immunother ; 65(3): 293-304, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26842125

RESUMO

The success in recent clinical trials using T cell receptor (TCR)-genetically engineered T cells to treat melanoma has encouraged the use of this approach toward other malignancies and viral infections. Although hepatitis C virus (HCV) infection is being treated with a new set of successful direct anti-viral agents, potential for virologic breakthrough or relapse by immune escape variants remains. Additionally, many HCV+ patients have HCV-associated disease, including hepatocellular carcinoma (HCC), which does not respond to these novel drugs. Further exploration of other approaches to address HCV infection and its associated disease are highly warranted. Here, we demonstrate the therapeutic potential of PBL-derived T cells genetically engineered with a high-affinity, HLA-A2-restricted, HCV NS3:1406-1415-reactive TCR. HCV1406 TCR-transduced T cells can recognize naturally processed antigen and elicit CD8-independent recognition of both peptide-loaded targets and HCV+ human HCC cell lines. Furthermore, these cells can mediate regression of established HCV+ HCC in vivo. Our results suggest that HCV TCR-engineered antigen-reactive T cells may be a plausible immunotherapy option to treat HCV-associated malignancies, such as HCC.


Assuntos
Carcinoma Hepatocelular/terapia , Genes Codificadores dos Receptores de Linfócitos T/fisiologia , Hepatite C/complicações , Neoplasias Hepáticas/terapia , Linfócitos T/imunologia , Animais , Carcinoma Hepatocelular/etiologia , Linhagem Celular Tumoral , Engenharia Genética , Antígeno HLA-A2/imunologia , Humanos , Imunoterapia , Neoplasias Hepáticas/etiologia , Camundongos , Proteínas não Estruturais Virais/genética
4.
PLoS One ; 16(6): e0252197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34185790

RESUMO

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. Though immune checkpoint inhibitors (ICIs) have revolutionized lung cancer therapy in recent years, there are several factors limiting the therapeutic efficacy of ICI-based immunotherapy in lung cancer. Recent evidence suggests that one such mechanism is the phenotypic shift of tumor-infiltrating macrophages away from an anti-tumor M1 phenotype and towards an anti-inflammatory and tumor-permissive M2 phenotype. Though this phenomenon is well documented, the means through which the lung tumor microenvironment (TME) usurps macrophage function are poorly described. Hepatocyte growth factor (HGF) is a known driver of both lung cancer pathobiology as well as M2 polarization, and its signaling is antagonized by the tumor suppressor gene HAI-1 (SPINT1). Using a combination of genomic databases, primary NSCLC specimens, and in vitro models, we determined that patients with loss of HAI-1 have a particularly poor prognosis, hallmarked by increased HGF expression and an M2-dominant immune infiltrate. Similarly, conditioned media from HAI-1-deficient tumor cells led to a loss of M1 and increased M2 polarization in vitro, and patient NSCLC tissues with loss of HAI-1 showed a similar loss of M1 macrophages. Combined, these results suggest that loss of HAI-1 is a potential means through which tumors acquire an immunosuppressive, M2-dominated TME, potentially through impaired M1 macrophage polarization. Hence, HAI-1 status may be informative when stratifying patients that may benefit from therapies targeting the HGF pathway, particularly as an adjuvant to ICI-based immunotherapy.


Assuntos
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Macrófagos/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Linhagem Celular Tumoral , Humanos , Imunoterapia/métodos , Pulmão/metabolismo , Ativação de Macrófagos/fisiologia , Transdução de Sinais/fisiologia , Células THP-1 , Microambiente Tumoral/fisiologia
5.
J Leukoc Biol ; 102(2): 551-561, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28550117

RESUMO

Advancement in flow cytometry reagents and instrumentation has allowed for simultaneous analysis of large numbers of lineage/functional immune cell markers. Highly complex datasets generated by polychromatic flow cytometry require proper analytical software to answer investigators' questions. A problem among many investigators and flow cytometry Shared Resource Laboratories (SRLs), including our own, is a lack of access to a flow cytometry-knowledgeable bioinformatics team, making it difficult to learn and choose appropriate analysis tool(s). Here, we comparatively assess various multidimensional flow cytometry software packages for their ability to answer a specific biologic question and provide graphical representation output suitable for publication, as well as their ease of use and cost. We assessed polyfunctional potential of TCR-transduced T cells, serving as a model evaluation, using multidimensional flow cytometry to analyze 6 intracellular cytokines and degranulation on a per-cell basis. Analysis of 7 parameters resulted in 128 possible combinations of positivity/negativity, far too complex for basic flow cytometry software to analyze fully. Various software packages were used, analysis methods used in each described, and representative output displayed. Of the tools investigated, automated classification of cellular expression by nonlinear stochastic embedding (ACCENSE) and coupled analysis in Pestle/simplified presentation of incredibly complex evaluations (SPICE) provided the most user-friendly manipulations and readable output, evaluating effects of altered antigen-specific stimulation on T cell polyfunctionality. This detailed approach may serve as a model for other investigators/SRLs in selecting the most appropriate software to analyze complex flow cytometry datasets. Further development and awareness of available tools will help guide proper data analysis to answer difficult biologic questions arising from incredibly complex datasets.


Assuntos
Citometria de Fluxo/métodos , Software , Linfócitos T/citologia , Linfócitos T/imunologia , Biologia Computacional/métodos , Imunofluorescência , Humanos
6.
J Leukoc Biol ; 100(3): 545-57, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26921345

RESUMO

A major obstacle hindering the development of effective immunity against viral infections, their associated disease, and certain cancers is their inherent genomic instability. Accumulation of mutations can alter processing and presentation of antigens recognized by antibodies and T cells that can lead to immune escape variants. Use of an agent that can intrinsically combat rapidly mutating viral or cancer-associated antigens would be quite advantageous in developing effective immunity against such disease. We propose that T cells harboring cross-reactive TCRs could serve as a therapeutic agent in these instances. With the use of hepatitis C virus, known for its genomic instability as a model for mutated antigen recognition, we demonstrate cross-reactivity against immunogenic and mutagenic nonstructural protein 3:1406-1415 and nonstructural protein 3:1073-1081 epitopes in PBL-derived, TCR-gene-modified T cells. These single TCR-engineered T cells can CD8-independently recognize naturally occurring and epidemiologically relevant mutant variants. TCR-peptide MHC modeling data allow us to rationalize how TCR structural properties accommodate recognition of certain mutated epitopes and how these substitutions impact the requirement of CD8 affinity enhancement for recognition. A better understanding of such TCRs' promiscuous behavior may allow for exploitation of these properties to develop novel, adoptive T cell-based therapies for viral infections and cancers exhibiting similar genomic instability.


Assuntos
Epitopos de Linfócito T/imunologia , Instabilidade Genômica , Hepacivirus/imunologia , Hepatite C/prevenção & controle , Antígenos de Histocompatibilidade Classe I/imunologia , Imunoterapia , Receptores de Antígenos de Linfócitos T/imunologia , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Reações Cruzadas , Hepacivirus/genética , Hepatite C/etiologia , Humanos
7.
Biomed Res Int ; 2014: 619829, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24575409

RESUMO

Bladder tumors represent a special therapeutic challenge as they have a high recurrence rate requiring repeated interventions and may progress to invasive or metastatic disease. Exosomes carry proteins implicated in bladder cancer progression and have been implicated in bladder cancer cell survival. Here, we characterized exosome uptake and internalization by human bladder cancer cells using Amnis ImageStreamX, an image cytometer. Exosomes were isolated by ultracentrifugation from bladder cancer culture conditioned supernatant, labeled with PKH-26, and analyzed on the ImageStreamX with an internal standard added to determine concentration. Exosomes were cocultured with bladder cancer cells and analyzed for internalization. Using the IDEAS software, we determined exosome uptake based on the number of PKH-26+ spots and overall PKH-26 fluorescence intensity. Using unlabeled beads of a known concentration and size, we were able to determine concentrations of exosomes isolated from bladder cancer cells. We measured exosome uptake by recipient bladder cancer cells, and we demonstrated that uptake is dose and time dependent. Finally, we found that uptake is active and specific, which can be partially blocked by heparin treatment. The characterization of cellular uptake and internalization by bladder cancer cells may shed light on the role of exosomes on bladder cancer recurrence and progression.


Assuntos
Endocitose/genética , Recidiva Local de Neoplasia/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Exossomos , Humanos , Recidiva Local de Neoplasia/patologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA