Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37447804

RESUMO

A synthetic partial discharge (PD) calibrator has been developed to qualify PD analyzers used for insulation diagnosis of HVAC and HVDC grids including cable systems, AIS, GIS, GIL, power transformers, and HVDC converters. PD analyzers that use high-frequency current transformers (HFCT) can be qualified by means of the metrological and diagnosis tests arranged in this calibrator. This synthetic PD calibrator can reproduce PD pulse trains of the same sequence as actual representative defects (cavity, surface, floating potential, corona, SF6 protrusion, SF6 jumping particles, bubbles in oil, etc.) acquired in HV equipment in service or by means of measurements made in HV laboratory test cells. The diagnostic capabilities and PD measurement errors of the PD analyzers using HFCT sensors can be determined. A new time parameter, "PD Time", associated with any arbitrary PD current pulse i(t) is introduced for calibration purposes. It is defined as the equivalent width of a rectangular PD pulse with the same charge value and amplitude as the actual PD current pulse. The synthetic PD calibrator consists of a pulse generator that operates on a current loop matched to 50 Ω impedance to avoid unwanted reflections. The injected current is measured by a reference measurement system built into the PD calibrator that uses two HFCT sensors to ensure that the current signal is the same at the input and output of the calibration cage where the HFCT of the PD analyzer is being calibrated. Signal reconstruction of the HFCT output signal to achieve the input signal is achieved by applying state variable theory using the transfer impedance of the HFCT sensor in the frequency domain.


Assuntos
Calibragem , Humanos
2.
Sensors (Basel) ; 21(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34883971

RESUMO

Periodic calibrations of Energy Measurement Systems (EMS) installed in locomotives must be carried out to demonstrate the required accuracy established in the EN 50463-2 standard according to European Parliament and Council Directive 2008/57/EC on the interoperability of rail systems within the Community. As a result of the work performed in the "MyRailS" EURAMET project an AC calibration facility was developed consisting of a fictive power source was developed. This fictive power source can generate distorted sinusoidal voltages up to 25 kV-50 Hz and 15 kV-16.7 Hz as well as distorted sinusoidal currents up to 500 A with harmonic content up to 5 kHz or phase-fired current waveform stated in EN50463-2 standard. These waveforms are representative of those that appear during periods of acceleration and breaking of the train. Reference measuring systems have been designed and built consisting of high voltage and high current transducers adapted to multimeters, which function as digital recorders to acquire synchronized voltage and current signals. An approved procedure has been developed and an in-depth uncertainty analysis has been performed to achieve a set of uncertainty formulas considering the influence parameters. Different influence parameters have been analyzed to evaluate uncertainty contributions for each quantity to be measured: rms voltage, rms current, active power, apparent power and non-active power of distorted voltage and current waveforms. The resulting calculated global expanded uncertainty for the developed Energy Measuring Function calibration set up has been better than 0.5% for distorted waveforms. This paper is focused on presenting the complete set of expressions and formulas developed for the different influence parameters, necessary for uncertainty budget calculation of an Energy Measuring Function calibration.

3.
Sensors (Basel) ; 20(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167602

RESUMO

Current standard EN 50463-2 indicates the tests and the requirements to be satisfied for an energy measurement system of a traction unit for railway applications. Some of these tests are to be done with several harmonics superposed on the rated voltage, respectively current. However, no calibration systems satisfying the standard requirements were available few years ago. The work performed in the EURAMET project "MyRailS" leads to the development of fictive power sources and reference measurement systems described in this paper. Therefore, it is possible to generate distorted 25 kV-50 Hz voltages with harmonics up to 5 kHz and 90° phase-fired currents up to 500 A with harmonics up to 5 kHz. The generated power is measured by developed traceable reference systems with accuracy better than 0.5%.

4.
J Chem Technol Biotechnol ; 94(2): 468-474, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31105372

RESUMO

BACKGROUND: To help mitigate future problems in the supply of platinum group metals (PGM) due to their scarcity and high demand, new recovery processes must be developed. Microbial processes are a great alternative for the recovery of PGM from waste since they are clean and environmentally friendly techniques. This research studied the microbial reduction of Pt(II) using an anaerobic granular sludge under different physiological conditions. RESULTS: The anaerobic granular sludge was able to reduce Pt(II) to Pt(0) nanoparticles that were deposited intracellularly as well as extracellularly as confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Hydrogen (H2) and formate supported the chemical reduction of Pt(II) while ethanol supported the biologically catalyzed reduction of Pt(II). Increasing initial concentrations of Pt(II), ethanol or biomass were each shown to increase the Pt(II) reduction rates. CONCLUSIONS: This study reported for the first time the reduction of Pt(II) using anaerobic granular sludge and provided insights that could help develop biorecovery techniques to alleviate future problems in the supply of PGMs.

5.
J Chem Technol Biotechnol ; 93(6): 1611-1617, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30140114

RESUMO

BACKGROUND: The future supply of platinum group metals (PGM) is at risk because of their scarcity combined with a high demand. Thus recovery of platinum (Pt) from waste is an option worthy of study to help alleviate future shortages. This research explored the microbial reduction of platinum (Pt). The ability of anaerobic granular sludge to reduce Pt(IV) ions under different physiological conditions was studied. RESULTS: X-Ray diffraction (XRD) and transmission electron microscope (TEM) analyses demonstrated the capacity of the microbial mixed culture to reduce Pt(IV) to Pt(0) nanoparticles, which were deposited on the cell-surface and in the periplasmic space. Ethanol supported the biologically catalyzed Pt(IV) reduction, meanwhile other electron donors; hydrogen (H2) and formate, promoted the chemical reduction of Pt(IV) with some additional biological stimulation in the case of H2. A hypothesis is proposed in which H2 formed from the acetogenesis of ethanol is implicated in subsequent abiotic reduction of Pt(IV) indicating an integrated bio-chemical process. Endogenous controls also resulted in slow Pt(IV) removal from aqueous solution. Selected redox mediators, exemplified by riboflavin, enhanced the Pt(IV) reduction rate. CONCLUSION: This study reported for the first time the ability of an anaerobic granular sludge to reduce Pt(IV) to elemental Pt(0) nanoparticles.

6.
Materials (Basel) ; 13(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936414

RESUMO

Due to the constant updating of regulatory standards on safety issues in electrical installations, limits are established for the maximum step potential that an installation can hold in a ground fault situation. In this paper, an upper bound to the maximum value of the step potentials arising in the soil surface when a fault takes place in a grounded electrical installation is estimated by means of a simple procedure. The direct measurement of the grounding electrode resistance together with some information about the soil resistivity and the knowledge of characteristic parameters of the electrode are used for the calculation of that upper bound. The procedure is tested at numerical simulation level by using different electrodes in several different scenarios corresponding to two-layered soils with different resistivity ratios. The dependency of the calculated upper bound with the electrode burial depth is also studied. Finally, a real case study is presented, and the results of the field measurements are shown as an example of the validity of the procedure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA