Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Am Chem Soc ; 146(18): 12473-12484, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716517

RESUMO

Layered metal-organic frameworks (MOFs) have emerged as promising materials for next-generation supercapacitors. Understanding how and why electrolyte ion size impacts electrochemical performance is crucial for developing improved MOF-based devices. To address this, we investigate the energy storage performance of Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) with a series of 1 M tetraalkylammonium tetrafluoroborate (TAABF4) electrolytes with different cation sizes. Three-electrode experiments show that Cu3(HHTP)2 exhibits an asymmetric charging response with all ion sizes, with higher energy storage upon positive charging and a greater charging asymmetry with larger TAA+ cations. The results further show that smaller TAA+ cations demonstrate superior capacitive performances upon both positive and negative charging compared to larger TAA+ cations. To gain further insights, electrochemical quartz crystal microbalance measurements were performed to probe ion electrosorption during charging and discharging. These reveal that Cu3(HHTP)2 has a cation-dominated charging mechanism, but interestingly indicate that the solvent also participates in the charging process with larger cations. Overall, the results of this study suggest that larger TAA+ cations saturate the pores of the Cu3(HHTP)2-based electrodes. This leads to more asymmetric charging behavior and forces solvent molecules to play a role in the charge storage mechanism. These findings significantly enhance our understanding of ion electrosorption in layered MOFs, and they will guide the design of improved MOF-based supercapacitors.

2.
J Am Chem Soc ; 146(33): 23171-23181, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39133641

RESUMO

Conductive layered metal-organic frameworks (MOFs) have demonstrated promising electrochemical performances as supercapacitor electrode materials. The well-defined chemical structures of these crystalline porous electrodes facilitate structure-performance studies; however, there is a fundamental lack in the molecular-level understanding of charge storage mechanisms in conductive layered MOFs. To address this, we employ solid-state nuclear magnetic resonance (NMR) spectroscopy to study ion adsorption in nickel 2,3,6,7,10,11-hexaiminotriphenylene, Ni3(HITP)2. In this system, we find that separate resonances can be observed for the MOF's in-pore and ex-pore ions. The chemical shift of in-pore electrolyte is found to be dominated by specific chemical interactions with the MOF functional groups, with this result supported by quantum mechanics/molecular mechanics (QM/MM) and density functional theory (DFT) calculations. Quantification of the electrolyte environments by NMR was also found to provide a proxy for electrochemical performance, which could facilitate the rapid screening of synthesized MOF samples. Finally, the charge storage mechanism was explored using a combination of ex-situ NMR and operando electrochemical quartz crystal microbalance (EQCM) experiments. These measurements revealed that cations are the dominant contributors to charge storage in Ni3(HITP)2, with anions contributing only a minor contribution to the charge storage. Overall, this work establishes the methods for studying MOF-electrolyte interactions via NMR spectroscopy. Understanding how these interactions influence the charging storage mechanism will aid the design of MOF-electrolyte combinations to optimize the performance of supercapacitors, as well as other electrochemical devices including electrocatalysts and sensors.

3.
Small ; : e2405259, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058218

RESUMO

This study investigates mechanochemical synthesis and cation-disordering mechanism of wurtzite-type Li3VO4 (LVO), highlighting its promise as a high-performance anode material for lithium-ion batteries and hybrid supercapacitors. Mechanochemical treatment of pristine LVO using a high-energy ball mill results in a "pure cation-disordered" LVO phase, allowing for meticulous analysis of cation arrangement. The X-ray and neutron diffraction study demonstrates progressive loss of order in LVO crystal with increasing milling duration. High-resolution transmission electron microscopy reveals disrupted lattice fringes, indicating cationic misalignment. Pair-distribution function analysis confirms loss of cation arrangements and the presence of short-range order. Combination of these multiple analytical techniques achieves a comprehensive understanding of cation regularity and clearly demonstrates order/disorder dichotomy in cation-disordered materials, ranging from short (<8 Å) to middle-long range (8-30 Å), using an integrated superstructure model of the cation-disordered LVO crystals. Electrochemical testing reveals that mechanochemically treated LVO exhibits superior rate capability, with a 70% capacity retention at a high current density of 50C-rate. Lithium diffusion coefficient measurements demonstrate enhanced lithium-ion mobility in the mechanochemically treated LVO, attributed to cation-disordering effect. These findings provide valuable insights into mechanochemical cation-disordering in LVO, presenting its potential as an efficient anode material for lithium-ion-based electrochemical energy storage.

4.
Angew Chem Int Ed Engl ; 63(14): e202319238, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38324461

RESUMO

In this study, we used 2-Dimmensionnal Ti3C2 MXene as model materials to understand how the surface groups affect their electrochemical performance. By adjusting the nature of the surface terminations (Cl-, N/O-, and O-) of Ti3C2 MXene through a molten salt approach, we could change the spacing between MXene layers and the level of water confinement, resulting in significant modifications of the electrochemical performance in acidic electrolyte. Using a combination of techniques including in-operando X-ray diffraction and electrochemical quartz crystal microbalance (EQCM) techniques, we found that the presence of confined water results in a drastic transition from an almost electrochemically inactive behavior for Cl-terminated Ti3C2 to an ideally fast pseudocapacitive signature for N,O-terminated Ti3C2 MXene. This experimental work not only demonstrates the strong connection between surface terminations and confined water but also reveals the importance of confined water on the charge storage mechanism and the reaction kinetics in MXene.

5.
J Am Chem Soc ; 144(31): 14217-14225, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35914237

RESUMO

Fundamental understanding of ion electroadsorption processes in porous electrodes on a molecular level provides important guidelines for next-generation energy storage devices like electric double layer capacitors (EDLCs). Porous carbons functionalized by heteroatoms show enhanced capacitive performance, but the underlying mechanism is still elusive, due to the lack of reliable tools to precisely identify multiple N species and establish clear structure property relations. Here, we use advanced analytical techniques such as low-temperature solid-state NMR (ssNMR) and electrochemical quartz crystal microbalance (EQCM) to relate the complex nitrogen functionalities to the charging mechanisms and capacitive performance. For the first time, it is demonstrated at a molecular level that N-doping strongly influences the electroadsorption mechanism in EDLCs. Without N-doping, anion (SO42-) adsorption-desorption dominates the charging mechanism, whereas after doping, Li+ electroadsorption plays a key role. With the help of EQCM, it is demonstrated that SO42- is strongly immobilized on the N-doped surface, leaving Li+ as the main charge carrier. The smaller size and higher concentration of Li+ compared to SO42- benefit a higher capacitance. Amine/amide N is responsible for high capacitance, but surprisingly the pyridinic, pyrrolic, and graphitic N groups have no significant influence. 2D 1H-15N NMR spectroscopy indicates that the conversion from pyridinium to pyrrolic N gives rise to a slightly decreased capacitance. This work not only demonstrates ssNMR as a powerful tool for surface chemistry characterization of electrode materials but also uncovers the related charging mechanism by EQCM, paving the way toward a comprehensive picture of EDLC chemistry.


Assuntos
Nitrogênio , Técnicas de Microbalança de Cristal de Quartzo , Carbono/química , Íons , Lítio , Espectroscopia de Ressonância Magnética , Nitrogênio/química , Porosidade
6.
Nat Mater ; 19(11): 1151-1163, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32747700

RESUMO

Electrochemical capacitors can store electrical energy harvested from intermittent sources and deliver energy quickly, but their energy density must be increased if they are to efficiently power flexible and wearable electronics, as well as larger equipment. This Review summarizes progress in the field of materials for electrochemical capacitors over the past decade as well as outlines key perspectives for future research. We describe electrical double-layer capacitors based on high-surface-area carbons, pseudocapacitive materials such as oxides and the two-dimensional inorganic compounds known as MXenes, and emerging microdevices for the Internet of Things. We show that new nanostructured electrode materials and matching electrolytes are required to maximize the amount of energy and speed of delivery, and different manufacturing methods will be needed to meet the requirements of the future generation of electronic devices. Scientifically justified metrics for testing, comparison and optimization of various kinds of electrochemical capacitors are provided and explained.

7.
Nat Mater ; 19(8): 894-899, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32284597

RESUMO

Two-dimensional carbides and nitrides of transition metals, known as MXenes, are a fast-growing family of materials that have attracted attention as energy storage materials. MXenes are mainly prepared from Al-containing MAX phases (where A = Al) by Al dissolution in F-containing solution; most other MAX phases have not been explored. Here a redox-controlled A-site etching of MAX phases in Lewis acidic melts is proposed and validated by the synthesis of various MXenes from unconventional MAX-phase precursors with A elements Si, Zn and Ga. A negative electrode of Ti3C2 MXene material obtained through this molten salt synthesis method delivers a Li+ storage capacity of up to 738 C g-1 (205 mAh g-1) with high charge-discharge rate and a pseudocapacitive-like electrochemical signature in 1 M LiPF6 carbonate-based electrolyte. MXenes prepared via this molten salt synthesis route may prove suitable for use as high-rate negative-electrode materials for electrochemical energy storage applications.

8.
Phys Chem Chem Phys ; 23(30): 15925-15934, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34286771

RESUMO

In situ NMR spectroscopy is a powerful technique to investigate charge storage mechanisms in carbon-based supercapacitors thanks to its ability to distinguish ionic and molecular species adsorbed in the porous electrodes from those in the bulk electrolyte. The NMR peak corresponding to the adsorbed species shows a clear change of chemical shift as the applied potential difference is varied. This variation in chemical shift is thought to originate from a combination of ion reorganisation in the pores and changes in ring current shifts due to the changes of electronic density in the carbon. While previous Density Functional Theory calculations suggested that the electronic density has a large effect, the relative contributions of these two effects is challenging to untangle. Here, we use mesoscopic simulations to simulate NMR spectra and investigate the relative importance of ion reorganisation and ring currents on the resulting chemical shift. The model is able to predict chemical shifts in good agreement with NMR experiments and indicates that the ring currents are the dominant contribution. A thorough analysis of a specific electrode/electrolyte combination for which detailed NMR experiments have been reported allows us to confirm that local ion reorganisation has a very limited effect but the relative quantities of ions in pores of different sizes, which can change upon charging/discharging, can lead to a significant effect. Our findings suggest that in situ NMR spectra of supercapacitors may provide insights into the electronic structure of carbon materials in the future.

9.
J Chem Phys ; 155(18): 184703, 2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34773950

RESUMO

Carbon-carbon supercapacitors are high power electrochemical energy storage systems, which store energy through reversible ion adsorption at the electrode-electrolyte interface. Due to the complex structure of the porous carbons used as electrodes, extracting structure-property relationships in these systems remains a challenge. In this work, we conduct molecular simulations of two model supercapacitors based on nanoporous electrodes with the same average pore size, a property often used when comparing porous materials, but different morphologies. We show that the carbon with the more ordered structure, and a well defined pore size, has a much higher capacitance than the carbon with the more disordered structure and a broader pore size distribution. We analyze the structure of the confined electrolyte and show that the ions adsorbed in the ordered carbon are present in larger quantities and are also more confined than for the disordered carbon. Both aspects favor a better charge separation and thus a larger capacitance. In addition, the disordered electrodes contain a significant amount of carbon atoms, which are never in contact with the electrolyte, carry a close to zero charge, and are thus not involved in the charge storage. The total quantities of adsorbed ions and degrees of confinement do not change much with the applied potential, and as such, this work opens the door to computationally tractable screening strategies.

10.
Chem Soc Rev ; 49(10): 3005-3039, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32285082

RESUMO

The urgent need for efficient energy storage devices has stimulated a great deal of research on electrochemical double layer capacitors (EDLCs). This review aims at summarizing the recent progress in nanoporous carbons, as the most commonly used EDLC electrode materials in the field of capacitive energy storage, from the viewpoint of materials science and characterization techniques. We discuss the key advances in the fundamental understanding of the charge storage mechanism in nanoporous carbon-based electrodes, including the double layer formation in confined nanopores. Special attention will be also paid to the important development of advanced in situ analytical techniques as well as theoretical studies to better understand the carbon pore structure, electrolyte ion environment and ion fluxes in these confined pores. We also highlight the recent progress in advanced electrolytes for EDLCs. The better understanding of the charge storage mechanism of nanoporous carbon-based electrodes and the rational design of electrolytes should shed light on developing the next-generation of EDLCs.

11.
Angew Chem Int Ed Engl ; 60(24): 13317-13322, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33555100

RESUMO

The development of the basic understanding of the charge storage mechanisms in electrodes for energy storage applications needs deep characterization of the electrode/electrolyte interface. In this work, we studied the charge of the double layer capacitance at single layer graphene (SLG) electrode used as a model material, in neat (EMIm-TFSI) and solvated (with acetonitrile) ionic liquid electrodes. The combination of electrochemical impedance spectroscopy and gravimetric electrochemical quartz crystal microbalance (EQCM) measurements evidence that the presence of solvent drastically increases the charge carrier density at the SLG/ionic liquid interface. The capacitance is thus governed not only by the electronic properties of the graphene, but also by the specific organization of the electrolyte side at the SLG surface originating from the strong interactions existing between the EMIm+ cations and SLG surface. EQCM measurements also show that the carbon structure, with the presence of sp2 carbons, affects the charge storage mechanism by favoring counter-ion adsorption on SLG electrode versus ion exchange mechanism in amorphous porous carbons.

12.
J Am Chem Soc ; 141(42): 16559-16563, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31588740

RESUMO

Graphene-based carbon materials are promising candidates for electrical double-layer (EDL) capacitors, and there is considerable interest in understanding the structure and properties of the graphene/electrolyte interface. Here, electrochemical impedance spectroscopy (EIS) and electrochemical quartz crystal microbalance (EQCM) are used to characterize the ion fluxes and adsorption on single-layer graphene in neat ionic liquid (EMI-TFSI) electrolyte. It is found that a positively charged ion-species desorption and ion reorganization dominate the double-layer charging during positive and negative polarizations, respectively, leading to the increase in EDL capacitance with applied potential.

13.
Nat Mater ; 16(12): 1225-1232, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28920938

RESUMO

Ionic liquids are composed of equal quantities of positive and negative ions. In the bulk, electrical neutrality occurs in these liquids due to Coulombic ordering, in which ion shells of alternating charge form around a central ion. Their structure under confinement is far less well understood. This hinders the widespread application of ionic liquids in technological applications. Here we use scattering experiments to resolve the structure of a widely used ionic liquid (EMI-TFSI) when it is confined inside nanoporous carbons. We show that Coulombic ordering reduces when the pores can accommodate only a single layer of ions. Instead, equally charged ion pairs are formed due to the induction of an electric potential of opposite sign in the carbon pore walls. This non-Coulombic ordering is further enhanced in the presence of an applied external electric potential. This finding opens the door for the design of better materials for electrochemical applications.

14.
Nat Mater ; 20(12): 1597-1598, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34815568
16.
Nat Mater ; 14(8): 812-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26099110

RESUMO

Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.

17.
Acta Chim Slov ; 63(3): 417-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27640370

RESUMO

A critical view on the outcome of research in nanomaterials for electrochemical energy storage devices (batteries and supercapacitors) is provided through selected examples. The nano- approach traces back to the early battery research and its benefits realized even before the nano- term was coined. It has enabled important progresses which have translated, for instance, in the possibility of using LiFePO4 as electrode material. On the other hand, the nano- approach has also been oversold at all levels and hence some examples are also shown on the detrimental side effects of the use of nano-materials which should be taken into account if steady progress is to be made that finally results in practical benefits in energy storage devices.

18.
J Am Chem Soc ; 137(39): 12627-32, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26369420

RESUMO

Supercapacitors are electrochemical devices which store energy by ion adsorption on the surface of a porous carbon. They are characterized by high power delivery. The use of nanoporous carbon to increase their energy density should not hinder their fast charging. However, the mechanisms for ion transport inside electrified nanopores remain largely unknown. Here we show that the diffusion is characterized by a hierarchy of time scales arising from ion confinement, solvation, and electrosorption effects. By combining electrochemistry experiments with molecular dynamics simulations, we determine the in-pore conductivities and diffusion coefficients and their variations with the applied potential. We show that the diffusion of the ions is slower by 1 order of magnitude compared to the bulk electrolyte. The desolvation of the ions occurs on much faster time scales than electrosorption.

19.
J Am Chem Soc ; 137(22): 7231-42, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25973552

RESUMO

Ionic liquids are emerging as promising new electrolytes for supercapacitors. While their higher operating voltages allow the storage of more energy than organic electrolytes, they cannot currently compete in terms of power performance. More fundamental studies of the mechanism and dynamics of charge storage are required to facilitate the development and application of these materials. Here we demonstrate the application of nuclear magnetic resonance spectroscopy to study the structure and dynamics of ionic liquids confined in porous carbon electrodes. The measurements reveal that ionic liquids spontaneously wet the carbon micropores in the absence of any applied potential and that on application of a potential supercapacitor charging takes place by adsorption of counterions and desorption of co-ions from the pores. We find that adsorption and desorption of anions surprisingly plays a more dominant role than that of the cations. Having elucidated the charging mechanism, we go on to study the factors that affect the rate of ionic diffusion in the carbon micropores in an effort to understand supercapacitor charging dynamics. We show that the line shape of the resonance arising from adsorbed ions is a sensitive probe of their effective diffusion rate, which is found to depend on the ionic liquid studied, as well as the presence of any solvent additives. Taken as whole, our NMR measurements allow us to rationalize the power performances of different electrolytes in supercapacitors.

20.
J Am Chem Soc ; 136(24): 8722-8, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24869895

RESUMO

Electrochemical quartz crystal microbalance (EQCM) and cyclic voltammetry (CV) measurements were used to characterize ion adsorption in carbide-derived carbon (CDC) with two different average pore sizes (1 and 0.65 nm), from neat and solvated 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI) electrolytes. From the electrode mass change in neat EMI-TFSI, it was shown that one net charge stored corresponds almost to one single ion at high polarization; in that case, no ion-pairing or charge screening by co-ions were observed. In 2 M EMI-TFSI in acetonitrile electrolyte, experimental solvation numbers were estimated for EMI(+) cation, showing a partial desolvation when cations were adsorbed in confined carbon pores. The extent of desolvation increased when decreasing the carbon pore size (from 1 down to 0.65 nm). The results also suggest that EMI(+) cation owns higher mobility than TFSI(-) anion in these electrolytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA