Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 364: 142976, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094701

RESUMO

Cyanobacteria in water supplies are considered an emerging threat, as some species produce toxic metabolites, cyanotoxins, of which the most widespread and well-studied are microcystins. Consumption of contaminated water is a common exposure route to cyanotoxins, making the study of cyanobacteria in drinking waters a priority to protect public health. In drinking water treatment plants, pre-oxidation with chlorinated compounds is widely employed to inhibit cyanobacterial growth, although concerns on its efficacy in reducing cyanotoxin content exists. Additionally, the effects of chlorination on abundant but less-studied cyanometabolites (e.g. cyanopeptolins whose toxicity is still unclear) remain poorly investigated. Here, two chlorinated oxidants, sodium hypochlorite (NaClO) and chlorine dioxide (ClO2), were tested on the toxic cyanobacterium Microcystis aeruginosa, evaluating their effect on cell viability, toxin profile and content. Intra- and extracellular microcystins and other cyanometabolites, including their degradation products, were identified using an untargeted LC-HRMS approach. Both oxidants were able to inactivate M. aeruginosa cells at a low dose (0.5 mg L-1), and greatly reduced intracellular toxins content (>90%), regardless of the treatment time (1-3 h). Conversely, a two-fold increase of extracellular toxins after NaClO treatment emerged, suggesting a cellular damage. A novel metabolite named cyanopeptolin-type peptide-1029, was identified based on LC-HRMSn (n = 2, 3) evidence, and it was differently affected by the two oxidants. NaClO led to increase its extracellular concentration from 2 to 80-100 µg L-1, and ClO2 induced the formation of its oxidized derivative, cyanopeptolin-type peptide-1045. In conclusion, pre-oxidation treatments of raw water contaminated by toxic cyanobacteria may lead to increased cyanotoxin concentrations in drinking water and, depending on the chemical agent, its dose and treatment duration, also of oxidized metabolites. Since the effects of such metabolites on human health remain unknown, this issue should be handled with extreme caution by water security agencies involved in drinking water management.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36360953

RESUMO

The use of multi-wavelength spectrofluorometers for the fast detection of algal taxa, based on chlorophyll a (Chl-a) emission spectra, has become a common practice in freshwater water management, although concerns about their accuracy have been raised. Here, inter-laboratory comparisons using monoalgal cultures have been performed to assess the reliability of different spectrofluorometer models, alongside Chl-a extraction methods. Higher Chl-a concentrations were obtained when using the spectrofluorometers than extraction methods, likely due to the poor extraction efficiencies of solvents, highlighting that traditional extraction methods could underestimate algal or cyanobacterial biomass. Spectrofluorometers correctly assigned species to the respective taxonomic group, with low and constant percent attribution errors (Chlorophyta and Euglenophyceae 6-8%, Cyanobacteria 0-3%, and Bacillariophyta 10-16%), suggesting that functioning limitations can be overcome by spectrofluorometer re-calibration with fresh cultures. The monitoring of a natural phytoplankton assemblage dominated by Chlorophyta and Cyanobacteria gave consistent results among spectrofluorometers and with microscopic observations, especially when cell biovolume rather than cell density was considered. In conclusion, multi-wavelength spectrofluorometers were confirmed as valid tools for freshwater monitoring, whereas a major focus on intercalibration procedures is encouraged to improve their reliability and broaden their use as fast monitoring tools to prevent environmental and public health issues related to the presence of harmful cyanobacteria.


Assuntos
Clorófitas , Cianobactérias , Fitoplâncton , Clorofila A/análise , Reprodutibilidade dos Testes , Água Doce , Monitoramento Ambiental/métodos , Clorofila/análise
3.
Int J Biol Macromol ; 191: 92-99, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34536471

RESUMO

Polyhydroxybutyrate (PHB) production by the cyanobacterium cf. Anabaena sp. was here studied by varying the medium composition and the carbon source used to induce mixotrophic growth conditions. The highest PHB productivity (0.06 gPHB gbiomass-1 d-1) was observed when cultivating cf. Anabaena sp. in phosphorus-free medium and in the presence of sodium acetate (5.0 g L-1 concentration), after an incubation period of 7 days. A content of 40% of PHB on biomass, a dry weight of 0.1 g L-1, and a photosynthetic efficiency equal to the control were obtained. The cyanobacterium was then grown on a larger scale (10 L) to evaluate the characteristics of the produced PHB in relation to the main composition of the biomass (the content of proteins, polysaccharides, and lipids): after an incubation period of 7 days, a content of 6% of lipids (52% of which as unsaturated fatty acids with 18 carbon atoms), 12% of polysaccharides, 28% of proteins, and 46% of PHB was reached. The extracted PHB had a molecular weight of 3 MDa and a PDI of 1.7. These promising results demonstrated that cf. Anabaena sp. can be included among the Cyanobacteria species able to produce polyhydroxyalkanoates (PHAs) either in photoautotrophic or mixotrophic conditions, especially when it is grown under phosphorus-free conditions.


Assuntos
Anabaena/metabolismo , Hidroxibutiratos/metabolismo , Microbiologia Industrial/métodos , Poliésteres/metabolismo , Anabaena/crescimento & desenvolvimento , Biomassa , Fósforo/metabolismo
4.
Bioresour Technol ; 292: 121921, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31398547

RESUMO

Phaeodactylum tricornutum is considered a promising source of polyunsaturated fatty acids (PUFAs), in particular eicosapentaenoic acid (EPA). In this study, P. tricornutum cultivation using waste products from anaerobic digestion (i.e. liquid digestate and CO2) was tested and scaled-up in closed and open prototype systems. The chemical composition of algal biomass was evaluated to optimize the lipid content. Algal productivity and composition, especially in terms of PUFAs, were not modified by the use of waste CO2. Digestate led to a lower protein (24%) content than medium (36-37%), without affecting lipid amount (about 37%). Algal and EPA productivity were nearly two-fold higher by using photobioreactors (0.075 g biomass L-1 day-1 and 1.62 mg EPA g-1 day-1) than open ponds, which are more influenced by environmental conditions. This study highlights that economic and environmental benefits could be achieved by using waste CO2 and liquid digestate from anaerobic digestion for microalgae cultivation.


Assuntos
Microalgas , Fotobiorreatores , Biocombustíveis , Biomassa , Dióxido de Carbono , Lagoas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA