Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mamm Genome ; 30(11-12): 353-361, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31776723

RESUMO

Visualizing regions of conserved synteny between two genomes is supported by numerous software applications. However, none of the current applications allow researchers to select genome features to display or highlight in blocks of synteny based on the annotated biological properties of the features (e.g., type, function, and/or phenotype association). To address this usability gap, we developed an interactive web-based conserved synteny browser, The Jackson Laboratory (JAX) Synteny Browser. The browser allows researchers to highlight or selectively display genome features in the reference and/or the comparison genome according to the biological attributes of the features. Although the current implementation for the browser is limited to the reference genomes for the laboratory mouse and human, the software platform is intentionally genome agnostic. The JAX Synteny Browser software can be deployed for any two genomes where genome coordinates for syntenic blocks are defined and for which biological attributes of the features in one or both genomes are available in widely used standard bioinformatics file formats. The JAX Synteny Browser is available at: http://syntenybrowser.jax.org/. The code base is available from GitHub: https://github.com/TheJacksonLaboratory/syntenybrowser and is distributed under the Creative Commons Attribution license (CC BY).


Assuntos
Genômica , Internet , Sintenia/genética , Animais , Diabetes Mellitus Tipo 2/genética , Ontologia Genética , Humanos , Camundongos , Locos de Características Quantitativas/genética
2.
Exp Mol Pathol ; 98(1): 106-12, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25562415

RESUMO

BACKGROUND: The continued development of targeted therapeutics for cancer treatment has required the concomitant development of more expansive methods for the molecular profiling of the patient's tumor. We describe the validation of the JAX Cancer Treatment Profile™ (JAX-CTP™), a next generation sequencing (NGS)-based molecular diagnostic assay that detects actionable mutations in solid tumors to inform the selection of targeted therapeutics for cancer treatment. METHODS: NGS libraries are generated from DNA extracted from formalin fixed paraffin embedded tumors. Using hybrid capture, the genes of interest are enriched and sequenced on the Illumina HiSeq 2500 or MiSeq sequencers followed by variant detection and functional and clinical annotation for the generation of a clinical report. RESULTS: The JAX-CTP™ detects actionable variants, in the form of single nucleotide variations and small insertions and deletions (≤50 bp) in 190 genes in specimens with a neoplastic cell content of ≥10%. The JAX-CTP™ is also validated for the detection of clinically actionable gene amplifications. CONCLUSIONS: There is a lack of consensus in the molecular diagnostics field on the best method for the validation of NGS-based assays in oncology, thus the importance of communicating methods, as contained in this report. The growing number of targeted therapeutics and the complexity of the tumor genome necessitate continued development and refinement of advanced assays for tumor profiling to enable precision cancer treatment.


Assuntos
Biologia Computacional , DNA de Neoplasias/análise , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular , Mutação/genética , Proteínas de Neoplasias/genética , Neoplasias/diagnóstico , Neoplasias/genética , Análise de Sequência de DNA/métodos , Algoritmos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/terapia , Inclusão em Parafina , Prognóstico
3.
BMC Med Genomics ; 12(1): 92, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262303

RESUMO

BACKGROUND: Patient-derived xenograft (PDX) models are in vivo models of human cancer that have been used for translational cancer research and therapy selection for individual patients. The Jackson Laboratory (JAX) PDX resource comprises 455 models originating from 34 different primary sites (as of 05/08/2019). The models undergo rigorous quality control and are genomically characterized to identify somatic mutations, copy number alterations, and transcriptional profiles. Bioinformatics workflows for analyzing genomic data obtained from human tumors engrafted in a mouse host (i.e., Patient-Derived Xenografts; PDXs) must address challenges such as discriminating between mouse and human sequence reads and accurately identifying somatic mutations and copy number alterations when paired non-tumor DNA from the patient is not available for comparison. RESULTS: We report here data analysis workflows and guidelines that address these challenges and achieve reliable identification of somatic mutations, copy number alterations, and transcriptomic profiles of tumors from PDX models that lack genomic data from paired non-tumor tissue for comparison. Our workflows incorporate commonly used software and public databases but are tailored to address the specific challenges of PDX genomics data analysis through parameter tuning and customized data filters and result in improved accuracy for the detection of somatic alterations in PDX models. We also report a gene expression-based classifier that can identify EBV-transformed tumors. We validated our analytical approaches using data simulations and demonstrated the overall concordance of the genomic properties of xenograft tumors with data from primary human tumors in The Cancer Genome Atlas (TCGA). CONCLUSIONS: The analysis workflows that we have developed to accurately predict somatic profiles of tumors from PDX models that lack normal tissue for comparison enable the identification of the key oncogenic genomic and expression signatures to support model selection and/or biomarker development in therapeutic studies. A reference implementation of our analysis recommendations is available at https://github.com/TheJacksonLaboratory/PDX-Analysis-Workflows .


Assuntos
Transformação Celular Neoplásica , Genômica/métodos , Neoplasias/genética , Neoplasias/patologia , Fluxo de Trabalho , Animais , Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica , Humanos , Linfoma/genética , Linfoma/patologia , Camundongos , Mutação Puntual , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA