Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 149(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36305473

RESUMO

The polarity of mouse hair follicles is controlled by the Frizzled (Fzd) receptors and other membrane planar cell polarity (PCP) proteins. Whether Wnt proteins can act as PCP ligands in the skin remains unknown. Here, we show that overexpression of Wnt5a in the posterior part of mouse embryos causes a local disruption of hair follicle orientation. The misoriented hair follicle phenotype in Wnt5a overexpressing mice can be rescued by a heterozygous loss of Fzd6, suggesting Wnt5a is likely to signal through Fzd6. Although the membrane distribution of PCP proteins seems unaffected by Wnt5a overexpression, transcriptional profiling analyses identify a set of genes as potential targets of the skin polarization program controlled by Wnt5a/Fzd6 signaling. Surprisingly, deletion of Wnt5a globally or in the posterior part of the mouse embryos does not affect hair follicle orientation. We show that many other Wnts are highly expressed in the developing skin. They can activate the Fzd6 signaling pathway in vitro and may act together with Wnt5a to regulate the Fzd6-mediated skin polarization. Our experiments demonstrate for the first time that Wnt5a can function as an orienting cue for mouse skin PCP.


Assuntos
Folículo Piloso , Proteínas Wnt , Animais , Camundongos , Polaridade Celular/genética , Folículo Piloso/metabolismo , Transdução de Sinais/genética , Pele/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
2.
Dev Biol ; 468(1-2): 146-153, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32758484

RESUMO

White sponge nevus (WSN) is a benign autosomal dominant disorder characterized by the formation of white spongy plaques in the oral mucosa. Keratin (KRT) 13 is highly expressed in the mucosa, and mutations in this gene have been commonly associated with WSN patients. However, it remains unknown whether there is a causal relationship between KRT13 mutations and WSN and what the underlying mechanisms might be. Here, we use mouse genetic models to demonstrate that Krt13 is crucial for the maintenance of epithelial integrity. Krt13 knockout mice show a WSN-like phenotype in several tissues, including the tongue, buccal mucosa, and esophagus. Transcriptome analyses uncover that Krt13 regulates a cohort of gene networks in tongue epithelial cells, including epithelial differentiation, immune responses, stress-activated kinase signaling, and metabolic processes. We also provide evidence that epithelial cells without Krt13 are susceptible to mechanical stresses experienced during postnatal life, resulting in unbalanced cell proliferation and differentiation. These data demonstrate that Krt13 is essential for maintaining epithelial homeostasis and loss of Krt13 causes the WSN-like phenotype in mice.


Assuntos
Diferenciação Celular , Proliferação de Células , Células Epiteliais , Queratina-13/genética , Leucoceratose da Mucosa Hereditária , Mucosa Bucal , Mutação , Animais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Queratina-13/metabolismo , Leucoceratose da Mucosa Hereditária/embriologia , Leucoceratose da Mucosa Hereditária/genética , Leucoceratose da Mucosa Hereditária/patologia , Camundongos , Camundongos Knockout , Mucosa Bucal/embriologia , Mucosa Bucal/patologia
3.
J Invest Dermatol ; 143(4): 621-629.e6, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36368445

RESUMO

FZD6 is a key gene that controls tissue polarity during development. Increasing evidence suggests that it also plays active roles in various cancers. In this study, we show that FZD6 is overexpressed in multiple melanoma cell lines and human samples. Knockdown or knockout of FZD6 does not affect cell proliferation but significantly reduces the invasive ability of melanoma cells. In addition, we have found that knockout of Fzd6 dramatically reduces lung metastasis in the Pten/BRaf mouse model of melanoma. Mechanistic studies in vitro and in vivo reveal a surprising involvement of canonical Wnt signaling and epithelial‒mesenchymal pathway in the FZD6-mediated invasive phenotype. Together, our study supports a promoter role of FZD6 in melanoma progression.


Assuntos
Melanoma , Via de Sinalização Wnt , Animais , Camundongos , Humanos , Via de Sinalização Wnt/genética , Transição Epitelial-Mesenquimal/genética , Melanoma/genética , Linhagem Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Receptores Frizzled/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA