Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Anal Chem ; 96(25): 10161-10169, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38864607

RESUMO

Fourier transform-fluorescence recovery after photobleaching (FT-FRAP) using a diffractive optical element (DOE) is shown to support distance-dependent diffusion analysis in biologically relevant media. Integration of DOEs enables patterning of a dot array for parallel acquisition of point-bleach FRAP measurements at multiple locations across the field of view. In homogeneous media, the spatial harmonics of the dot array analyzed in the spatial Fourier transform domain yield diffusion recovery curves evaluated over specific well-defined distances. Relative distances for diffusive recovery in the spatial Fourier transform domain are directly connected to the 2D (h,k) Miller indices of the corresponding lattice lines. The distribution of the photobleach power across the entire field of view using a multidot array pattern greatly increases the overall signal power in the spatial FT-domain for signal-to-noise improvements. Derivations are presented for the mathematical underpinnings of FT-FRAP performed with 2D periodicity in the photobleach patterns. Retrofitting of FT-FRAP into instrumentation for high-throughput FRAP analysis (Formulatrix) supports automated analysis of robotically prepared 96-well plates for precise quantification of molecular mobility. Figures of merit are evaluated for FT-FRAP in analysis for both slow diffusion of fluorescent dyes in glassy polymer matrices spanning several days and model proteins and monoclonal antibodies within aqueous solutions recovering in matters of seconds.

2.
J Chem Phys ; 160(5)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38341693

RESUMO

Chirality-selective vibrational sum frequency generation (chiral SFG) spectroscopy has emerged as a powerful technique for the study of biomolecular hydration water due to its sensitivity to the induced chirality of the first hydration shell. Thus far, water O-H vibrational bands in phase-resolved heterodyne chiral SFG spectra have been fit using one Lorentzian function per vibrational band, and the resulting fit has been used to infer the underlying frequency distribution. Here, we show that this approach may not correctly reveal the structure and dynamics of hydration water. Our analysis illustrates that the chiral SFG responses of symmetric and asymmetric O-H stretch modes of water have opposite phase and equal magnitude and are separated in energy by intramolecular vibrational coupling and a heterogeneous environment. The sum of the symmetric and asymmetric responses implies that an O-H stretch in a heterodyne chiral SFG spectrum should appear as two peaks with opposite phase and equal amplitude. Using pairs of Lorentzian functions to fit water O-H stretch vibrational bands, we improve spectral fitting of previously acquired experimental spectra of model ß-sheet proteins and reduce the number of free parameters. The fitting allows us to estimate the vibrational frequency distribution and thus reveals the molecular interactions of water in hydration shells of biomolecules directly from chiral SFG spectra.

3.
Anal Chem ; 95(38): 14331-14340, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37699550

RESUMO

Multiphoton-excited fluorescence recovery while photobleaching (FRWP) is demonstrated as a method for quantitative measurements of rapid molecular diffusion over microsecond to millisecond timescales. Diffusion measurements are crucial in assessing molecular mobility in cell biology, materials science, and pharmacology. Optical and fluorescence microscopy techniques enable non-invasive rapid analysis of molecular diffusion but can be challenging for systems with diffusion coefficients exceeding ∼100 µm2/s. As an example, fluorescence recovery after photobleaching (FRAP) operates on the implicit assumption of a comparatively fast photobleaching step prior to a relatively slow recovery and is not generally applicable for systems exhibiting substantial recovery during photobleaching. These challenges are exacerbated in multiphoton excitation by the lower excitation efficiency and competing effects from local heating. Herein, beam-scanning FRWP with patterned line-bleach illumination is introduced as a technique that addresses FRAP limitations and further extends its application range by measuring faster diffusion events. In FRWP, the recovery of fluorescence is continuously probed after each pass of a fast-scanning mirror, and the upper bound of measurable diffusion rates is, therefore, only limited by the mirror scanning frequency. A theoretical model describing transient fluctuations in fluorescence intensity arising as a result of combined contributions from photobleaching and localized photothermal effect is introduced along with a mathematical framework for quantifying fluorescence intensity temporal curves and recovering room-temperature diffusion coefficients. FRWP is then tested by characterization of normal diffusion of rhodamine-labeled bovine serum albumin, green fluorescence protein, and immunoglobulin G molecules in aqueous solutions of varying viscosity.

4.
Anal Chem ; 95(4): 2192-2202, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36656303

RESUMO

The use of periodically structured illumination coupled with spatial Fourier-transform fluorescence recovery after photobleaching (FT-FRAP) was shown to support diffusivity mapping within segmented domains of arbitrary shape. Periodic "comb-bleach" patterning of the excitation beam during photobleaching encoded spatial maps of diffusion onto harmonic peaks in the spatial Fourier transform. Diffusion manifests as a simple exponential decay of a given harmonic, improving the signal to noise ratio and simplifying mathematical analysis. Image segmentation prior to Fourier transformation was shown to support pooling for signal to noise enhancement for regions of arbitrary shape expected to exhibit similar diffusivity within a domain. Following proof-of-concept analyses based on simulations with known ground-truth maps, diffusion imaging by FT-FRAP was used to map spatially-resolved diffusion differences within phase-separated domains of model amorphous solid dispersion spin-cast thin films. Notably, multi-harmonic analysis by FT-FRAP was able to definitively discriminate and quantify the roles of internal diffusion and exchange to higher mobility interfacial layers in modeling the recovery kinetics within thin amorphous/amorphous phase-separated domains, with interfacial diffusion playing a critical role in recovery. These results have direct implications for the design of amorphous systems for stable storage and efficacious delivery of therapeutic molecules.

5.
Mol Pharm ; 20(1): 593-605, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36346665

RESUMO

Atomic layer coating (ALC) is emerging as a particle engineering strategy to inhibit surface crystallization of amorphous solid dispersions (ASDs). In this study, we turn our attention to evaluating drug release behavior from ALC-coated ASDs, and begin to develop a mechanistic framework. Posaconazole/hydroxypropyl methylcellulose acetate succinate was used as a model system at both 25% and 50% drug loadings. ALC-coatings of aluminum oxide up to 40 nm were evaluated for water sorption kinetics and dissolution performance under a range of pH conditions. Scanning electron microscopy with energy dispersive X-ray analysis was used to investigate the microstructure of partially released ASD particles. Coating thickness and defect density (inferred from deposition rates) were found to impact water sorption kinetics. Despite reduced water sorption kinetics, the presence of a coating was not found to impact dissolution rates under conditions where rapid drug release was observed. Under slower releasing conditions, underlying matrix crystallization was reduced by the coating, enabling greater levels of drug release. These results demonstrate that water was able to penetrate through the ALC coating, hydrating the amorphous solid, which can initiate dissolution of drug and/or polymer (depending on pH conditions). Swelling of the ASD substrate subsequently occurs, disrupting and cracking the coating, which serves to facilitate rapid drug release. Water sorption kinetics are highlighted as a potential predictive tool to investigate the coating quality and its potential impact on dissolution performance. This study has implications for formulation design and evaluation of ALC-coated ASD particles.


Assuntos
Polímeros , Água , Liberação Controlada de Fármacos , Solubilidade , Cristalização , Polímeros/química , Água/química , Composição de Medicamentos/métodos
6.
Anal Chem ; 94(38): 13100-13107, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36099561

RESUMO

Autofluorescence-detected photothermal mid-infrared (AF-PTIR) microscopy was shown to enable parts-per-million detection of α-indomethacin impurity in γ-indomethacin samples. Subtle differences in the photothermal response of the UV-autofluorescence of two indomethacin crystal polymorphs were used for sub-micron chemical discrimination based on fingerprint region mid-IR spectroscopy. The AF-PTIR assignment was independently confirmed by second harmonic generation (SHG) microscopy, which was shown to reduce the total analysis time by rapidly identifying the suitable fields of view. AF-PTIR microscopy has the potential to assist in the early identification of crystal form impurities in the solid dosage forms development pipeline.


Assuntos
Indometacina , Cristalização/métodos , Indometacina/química , Microscopia de Força Atômica/métodos
7.
Anal Chem ; 94(17): 6512-6520, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35446548

RESUMO

Label-free autofluorescence-detected photothermal mid-IR (AF-PTIR) microscopy is demonstrated experimentally and applied to test the distribution of active pharmaceutical ingredients (APIs) in a mixture containing representative pharmaceutical excipients. Two-photon excited UV-fluorescence (TPE-UVF) supports autofluorescence of native aromatic moieties using visible-light optics. Thermal modulation of the fluorescence quantum yield serves to report on infrared absorption, enabling infrared spectroscopy in the fingerprint region with a spatial resolution dictated by fluorescence. AF-PTIR provides high selectivity and sensitivity in image contrast for aromatic APIs, complementing broadly applicable optical photothermal IR (O-PTIR) microscopy based on photothermal modulation of refractive index/scattering. Mapping the API distribution is critical in designing processes for powdered dosage form manufacturing, with high spatial variance potentially producing variability in both delivered dosage and product efficacy. The ubiquity of aromatic moieties within API candidates suggests the viability of AF-PTIR in combination with O-PTIR to improve the confidence of chemical classification in spatially heterogeneous dosage forms.


Assuntos
Excipientes , Microscopia , Pós , Espectrofotometria Infravermelho/métodos
8.
J Am Chem Soc ; 143(29): 10809-10815, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34270255

RESUMO

We demonstrate instrumentation and methods to enable fluorescence-detected photothermal infrared (F-PTIR) microscopy and then demonstrate the utility of F-PTIR to characterize the composition within phase-separated domains of model amorphous solid dispersions (ASDs) induced by water sorption. In F-PTIR, temperature-dependent changes in fluorescence quantum efficiency are shown to sensitively report on highly localized absorption of mid-infrared radiation. The spatial resolution with which infrared spectroscopy can be performed is dictated by fluorescence microscopy, rather than the infrared wavelength. Intrinsic ultraviolet autofluorescence of tryptophan and protein microparticles enabled label-free F-PTIR microscopy. Following proof of concept F-PTIR demonstration on model systems of polyethylene glycol (PEG) and silica gel, F-PTIR enabled the characterization of chemical composition within inhomogeneous ritonavir/polyvinylpyrrolidone-vinyl acetate (PVPVA) amorphous dispersions. Phase separation is implicated in the observation of critical behaviors in ASD dissolution kinetics, with the results of F-PTIR supporting the formation of phase-separated drug-rich domains upon water sorption in spin-cast films.


Assuntos
Fluorescência , Polietilenoglicóis/química , Povidona/química , Ritonavir/química , Dióxido de Silício/química , Compostos de Vinila/química , Géis/química , Cinética , Microscopia de Fluorescência , Espectrofotometria Infravermelho , Temperatura
9.
Biophys J ; 119(4): 737-748, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32771078

RESUMO

Fourier transform fluorescence recovery after photobleaching (FT-FRAP) with patterned illumination is theorized and demonstrated for quantitatively evaluating normal and anomalous diffusion. Diffusion characterization is routinely performed to assess mobility in cell biology, pharmacology, and food science. Conventional FRAP is noninvasive, has low sample volume requirements, and can rapidly measure diffusion over distances of a few micrometers. However, conventional point-bleach measurements are complicated by signal-to-noise limitations, the need for precise knowledge of the photobleach beam profile, potential for bias due to sample heterogeneity, and poor compatibility with multiphoton excitation because of local heating. In FT-FRAP with patterned illumination, the time-dependent fluorescence recovery signal is concentrated to puncta in the spatial Fourier domain, with substantial improvements in signal-to-noise, mathematical simplicity, representative sampling, and multiphoton compatibility. A custom nonlinear optical beam-scanning microscope enabled patterned illumination for photobleaching through two-photon excitation. Measurements in the spatial Fourier domain removed dependence on the photobleach profile, suppressing bias from imprecise knowledge of the point spread function. For normal diffusion, the fluorescence recovery produced a simple single-exponential decay in the spatial Fourier domain, in excellent agreement with theoretical predictions. Simultaneous measurement of diffusion at multiple length scales was enabled through analysis of multiple spatial harmonics of the photobleaching pattern. Anomalous diffusion was characterized by FT-FRAP through a nonlinear fit to multiple spatial harmonics of the fluorescence recovery. Constraining the fit to describe diffusion over multiple length scales resulted in higher confidence in the recovered fitting parameters. Additionally, phase analysis in FT-FRAP was shown to inform on flow/sample translation.


Assuntos
Iluminação , Difusão , Recuperação de Fluorescência Após Fotodegradação , Análise de Fourier , Fotodegradação
10.
Anal Chem ; 92(1): 1171-1178, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31790194

RESUMO

Stochastic phase transformations within individual crystalline particles were recorded by integration of second harmonic generation (SHG) imaging with differential scanning calorimetry (DSC). The SHG activity of a crystal is highly sensitive to the specific molecular packing arrangement within a noncentrosymmetric lattice, providing access to information otherwise unavailable by conventional imaging approaches. Consequently, lattice transformations associated with dehydration/desolvation events were readily observed by SHG imaging and directly correlated to the phase transformations detected by the DSC measurements. Following studies of a model system (urea), stochastic differential scanning calorimetry (SDSC) was performed on trehalose dihydrate, which has a more complex phase behavior. From these measurements, SDSC revealed a broad diversity of single-particle thermal trajectories and direct evidence of a "cold phase transformation" process not observable by the DSC measurements alone.

11.
Mol Pharm ; 17(3): 769-776, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31769985

RESUMO

Single-particle tracking of crystal growth performed in situ enables substantial improvements in the signal-to-noise ratio (SNR) for recovered crystal nucleation and growth rates by nonlinear optical microscopy. Second harmonic generation (SHG) is exquisitely sensitive to noncentrosymmetric crystals, including those produced by many homochiral active pharmaceutical ingredients (APIs). Accelerated stability testing at elevated temperatures and relative humidity informs design of pharmaceutical formulations. In the present work, we demonstrate reduction in the Poisson noise associated with the finite number of particles present in a given field of view through continuous monitoring during stability testing. Single-particle tracking enables recovery of crystal growth rates of individual crystallites and enables unambiguous direct detection of nucleation events. Collectively, these capabilities provide significant improvements in the signal-to-noise for nucleation and crystal growth measurements, corresponding to approximately an order of magnitude reduction in anticipated measurement time for recovery of kinetics parameters.


Assuntos
Composição de Medicamentos/métodos , Desenho de Fármacos , Hexoses/química , Pirrolidinas/química , Ritonavir/química , Dióxido de Silício/química , Compostos de Vinila/química , Coloides , Cristalização , Estabilidade de Medicamentos , Umidade , Cinética , Microscopia de Geração do Segundo Harmônico/métodos , Razão Sinal-Ruído , Solubilidade , Temperatura , Água/química
12.
Mol Pharm ; 17(12): 4564-4571, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33151697

RESUMO

Seeded growth rates of ritonavir in copovidone at 75% relative humidity (RH) and 50 °C were evaluated by single-particle tracking second harmonic generation (SHG) microscopy and found to be ∼3-fold slower for crystallites at the surface compared to the bulk. The shelf lives of final dosage forms containing amorphous solid dispersions (ASDs) are often dictated by the rates of active pharmaceutical ingredient crystallization. Upon exposure to elevated RH, the higher anticipated water content near the surfaces of ASDs has the potential to substantially impact nucleation and growth kinetics relative to the bulk. However, quantitative assessment of these differences in growth rates is complicated by challenges associated with discrimination of the two contributions (supersaturation and molecular mobility) in ensemble-averaged measurements. In the present study, "sandwich" materials were prepared, in which sparse populations of ritonavir single-crystalline seeds were pressed between two similar ASD films to assess bulk crystallization rates. These sandwich materials were compared and contrasted with analogously prepared "open-faced" samples, without the capping film, to assess the surface crystallization rates. Single-particle analysis by SHG microscopy time-series during in situ crystallization produced average growth rates of 3.8 µm/h for bulk columnar crystals with a particle-to-particle standard deviation of 0.9 µm/h. In addition, columnar crystal growth rates for surface particles were measured to be 1.3 µm/h and radiating crystal growth rates for surface particles were measured to be 1.0 µm/h, both with a particle-to-particle deviation of 0.4 µm/h. The observed appearance of radiating crystals upon surface seeding is attributed to reduced ritonavir solubility upon water adsorption at the interface, leading to higher defect densities in crystal growth. Despite substantial differences in crystal habit, correction of the surface growth rates by a factor of 4 from geometric effects resulted in relatively minor but statistically significant differences in the growth kinetics for the two local environments. These results are consistent, with viscosity being a relatively weak function of water absorption coupled with primarily diffusion-limited growth kinetics.


Assuntos
Excipientes/química , Ritonavir/química , Disponibilidade Biológica , Química Farmacêutica , Cristalização , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Ritonavir/farmacocinética , Solubilidade
13.
J Phys Chem A ; 124(43): 9105-9112, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-32975942

RESUMO

Multiagent consensus equilibrium (MACE) is demonstrated for the integration of experimental observables as constraints in molecular structure determination and for the systematic merging of multiple computational architectures. MACE is founded on simultaneously determining the equilibrium point between multiple experimental and/or computational agents; the returned state description (e.g., atomic coordinates for molecular structure) represents the intersection of each manifold and is not equivalent to the average optimum state for each agent. The moment of inertia, determined directly from microwave spectroscopy measurements, serves to illustrate the mechanism through which MACE evaluations merge experimental and quantum chemical modeling. MACE results reported combine gradient descent optimization of each ab initio agent with an agent that predicts the chemical structure based on root-mean-square deviation of the predicted inertia tensor with experimentally measured moments of inertia. Successful model fusion for several small molecules was achieved as well as the larger molecule solketal. Fusing a model of moment of inertia, an underdetermined predictor of structure, with low cost computational methods yielded structure determination performance comparable to standard computational methods such as MP2/cc-pVTZ and greater agreement with experimental observables.

14.
Anal Chem ; 91(8): 5286-5294, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30856314

RESUMO

A digital filter based on non-negative matrix factorization (NMF) enables blind deconvolution of temporal information from large data sets, simultaneously recovering both photon arrival times and the instrument impulse response function (IRF). In general, the measured digital signals produced by modern analytical instrumentation are convolved by the corresponding IRFs, which can complicate quantitative analyses. Common examples include photon counting (PC), chromatography, super resolution imaging, fluorescence imaging, and mass spectrometry. Scintillation counting, in particular, provides a signal-to-noise advantage in measurements of low intensity signals, but has a limited dynamic range due to pulse overlap. This limitation can complicate the interpretation of data by masking temporal and amplitude information on the underlying detected signal. Typical methods for deconvolution of the photon events require advanced knowledge of the IRF, which is not generally trivial to obtain. In this work, a sliding window approach was developed to perform NMF one pixel at a time on short segments of large (e.g., 25 million point) data sets. Using random initial guesses for the IRF, the NMF filter simultaneously recovered both the deconvolved photon arrival times and the IRF. Applying the NMF filter to the analysis of triboluminescence (TL) data traces of active pharmaceutical ingredients enabled discrimination between different hypothesized physical origins of the signal.

15.
Opt Express ; 27(4): 3837-3850, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876008

RESUMO

Sample-scan phase contrast imaging was demonstrated by producing and coherently recombining light from a pair of axially offset focal planes. Placing a homogeneous medium in one of the two focal planes enables quantitative phase imaging using only common-path optics, recovering absolute phase without halo or oblique-illumination artifacts. Axially offset foci separated by 70 µm with a 10x objective were produced through polarization wavefront shaping using a matched pair of custom-designed microretarder arrays, compatible with retrofitting into conventional commercial microscopes. Quantitative phase imaging was achieved by two complementary approaches: i) rotation of a half wave plate, and ii) 50 kHz polarization modulation with lock-in amplification for detection.

16.
Pharm Res ; 36(12): 174, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31667638

RESUMO

PURPOSE: The overall goal of this study was to investigate the dissolution performance and crystallization kinetics of amorphous solid dispersions (ASDs) of a weakly basic compound, posaconazole, dispersed in a pH-sensitive polymeric matrix consisting of hydroxypropyl methylcellulose acetate succinate (HPMC-AS), using fasted-state simulated media. METHODS: ASDs with three different drug loadings, 10, 25 and 50 wt.%, and the commercially available tablets were exposed to acidic media (pH 1.6), followed by transfer to, and dissolution in, intestinal media (pH 6.5). Parallel single stage dissolution experiments in only simulated intestinal media were also performed to better understand the impact of the gastric stage. Different analytical methods, including nanoparticle tracking analysis, powder x-ray diffraction, second harmonic generation and two-photon excitation ultraviolet fluorescence microscopy, were used to characterize the phase behavior of these systems at different stages of dissolution. RESULTS: Results revealed that all ASDs exhibited some degree of drug release upon suspension in acidic media, and were also vulnerable to matrix crystallization. Upon transfer to intestinal media conditions, supersaturation was observed. This was short-lived for some dispersions due to the release of the crystals formed in the acid immersion stage which acted as seeds for crystal growth. Lower drug loading ASDs also exhibited transient formation of amorphous nanodroplets prior to crystallization. CONCLUSIONS: This work emphasizes the significance of assessing the impact of pH change on dissolution and provides a fundamental basis of understanding the phase behavior kinetics of ASDs of weakly basic drugs when formulated with pH sensitive polymers.


Assuntos
Portadores de Fármacos/química , Metilcelulose/análogos & derivados , Triazóis/química , Cristalização , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Cinética , Metilcelulose/química , Nanopartículas/química , Tamanho da Partícula , Transição de Fase , Solubilidade , Temperatura
17.
Anal Chem ; 90(7): 4406-4413, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505717

RESUMO

The low limits of detection afforded by second harmonic generation (SHG) microscopy coupled with image analysis algorithms enabled quantitative modeling of the temperature-dependent crystallization of active pharmaceutical ingredients (APIs) within amorphous solid dispersions (ASDs). ASDs, in which an API is maintained in an amorphous state within a polymer matrix, are finding increasing use to address solubility limitations of small-molecule APIs. Extensive stability testing is typically performed for ASD characterization, the time frame for which is often dictated by the earliest detectable onset of crystal formation. Here a study of accelerated stability testing on ritonavir, a human immunodeficiency virus (HIV) protease inhibitor, has been conducted. Under the condition for accelerated stability testing at 50 °C/75%RH and 40 °C/75%RH, ritonavir crystallization kinetics from amorphous solid dispersions were monitored by SHG microscopy. SHG microscopy coupled by image analysis yielded limits of detection for ritonavir crystals as low as 10 ppm, which is about 2 orders of magnitude lower than other methods currently available for crystallinity detection in ASDs. The four decade dynamic range of SHG microscopy enabled quantitative modeling with an established (JMAK) kinetic model. From the SHG images, nucleation and crystal growth rates were independently determined.

18.
Anal Chem ; 90(7): 4461-4469, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29521493

RESUMO

The total number of data points required for image generation in Raman microscopy was greatly reduced using sparse sampling strategies, in which the preceding set of measurements informed the next most information-rich sampling location. Using this approach, chemical images of pharmaceutical materials were obtained with >99% accuracy from 15.8% sampling, representing an ∼6-fold reduction in measurement time relative to full field of view rastering with comparable image quality. This supervised learning approach to dynamic sampling (SLADS) has the distinct advantage of being directly compatible with standard confocal Raman instrumentation. Furthermore, SLADS is not limited to Raman imaging, potentially providing time-savings in image reconstruction whenever the single-pixel measurement time is the limiting factor in image generation.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia Confocal/métodos , Análise Espectral Raman/métodos , Algoritmos
19.
Anal Chem ; 90(11): 6893-6898, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29694029

RESUMO

Triboluminescence (TL) is shown to enable selective detection of trace crystallinity within nominally amorphous solid dispersions (ASDs). ASDs are increasingly used for the preparation of pharmaceutical formulations, the physical stability of which can be negatively impacted by trace crystallinity introduced during manufacturing or storage. In the present study, TL measurements of a model ASD consisting of griseofulvin in polyethylene glycol produced limits of detection of 140 ppm. Separate studies of the particle size dependence of sucrose crystals and the dependence on polymorphism in clopidogrel bisulfate particles are both consistent with a mechanism for TL closely linked to the piezoelectric response of the crystalline fraction. Whereas disordered polymeric materials cannot support piezoelectric activity, molecular crystals produced from homochiral molecules adopt crystal structures that are overwhelmingly symmetry-allowed for piezoelectricity. Consequently, TL may provide a broadly applicable and simple experimental route for sensitive detection of trace crystallinity within nominally amorphous materials.


Assuntos
Composição de Medicamentos , Medições Luminescentes , Preparações Farmacêuticas/análise , Medições Luminescentes/instrumentação
20.
Opt Lett ; 43(24): 5973-5976, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30547983

RESUMO

A single fixed optic is combined with the sample translation capabilities inherent to most microscopes to achieve precise polarization-dependent second harmonic generation microscopy measurements of thin tissue sections. Although polarization measurements have enabled detailed structural analysis of collagen, challenges in integrating rotation stages or fast electro-optic/photoelastic modulation have complicated the retrofitting of existing systems for precise polarization analysis. Placing a static microretarder array in the rear conjugate plane resulted in spatially encoded polarization modulation across the field of view. A complete set of polarization rotation measurements was acquired at each pixel by sample translation, recovering local-frame tensors relating to structure within collagenous tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA