Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33412538

RESUMO

The structure and magnetic properties of Mn1+xV2-xO4(0 < x ≤1) have been investigated by the heat capacity, magnetization, x-ray diffraction and neutron diffraction measurements, and a phase diagram of temperature versus composition was built up: For x ≤ 0.3, a cubic-to-tetragonal (c > a) phase transition was observed; For x > 0.3, the system kept the tetragonal lattice. Although the collinear and noncollinear magnetic transition of V3+ions was obtained in all compositions, the canting angles between V3+ions decreased with Mn3+-doping and the ordering of Mn3+ions was only observed as x > 0.4. In order to study the dynamics of the ground state, the first principle simulation was applied to analyze not only the orbital effects of Mn2+, Mn3+, and V3+ions, but also the related exchange energies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA