Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(27): 10062-10069, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37382470

RESUMO

Microplastics (MP) have been found in various environments worldwide. However, not many studies focus on the open ocean due to logistical restraints. Between January and May 2020, the NRP Sagres sampled 123 linear paths of subsurface water of the Atlantic Ocean, passing by Cape Verde, the east coast of South America, and the west coast of Africa. The water was sampled through the ship's water system. The membranes were analyzed by the Hydrographic Institute of Portugal and the Norwegian Institute for Water Research by micro-FTIR. The contamination levels were reported with uncertainty, for 99% confidence level (CL), normalized for filtered water volume and the distance traveled during sampling. Uncertainties were calculated through a detailed ″bottom-up″ evaluation. MP were found in about a third of the stations (48 out of 123), and most of those stations (43 out of 48) presented concentrations below 1 m-3 km-1. The sites where higher concentrations were registered were the port of the island of Santiago (Cape Verde) ((5.9 ± 5.2) m-3 km-1), the Guanabara Bay in Rio de Janeiro (Brazil) ((41 ± 27) m-3 km-1), and close to South Africa ((4.9 ± 2.4) m-3 km-1). Most MP found were polyamide, polyester, polyethylene, ethylene vinyl acetate, and poly(methyl methacrylate). The estimated contamination levels cannot be directly compared with information obtained in other studies due to differences in how MP were determined and the unknown uncertainty of their measured values. This article presents a relevant and reliable contribution to understanding the MP distribution in the Atlantic Ocean.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Incerteza , Brasil , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água
2.
Anal Bioanal Chem ; 415(15): 2907-2919, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36947170

RESUMO

Reference materials (RMs) are vital tools in the validation of methods used to detect environmental pollutants. Microplastics, a relatively new environmental pollutant, require a variety of complex approaches to address their presence in environmental samples. Both interlaboratory comparison (ILC) studies and RMs are essential to support the validation of methods used in microplastic analysis. Presented here are results of quality assurance and quality control (QA/QC) performed on two types of candidate microplastic RMs: dissolvable gelatin capsules and soda tablets. These RMs have been used to support numerous international ILC studies in recent years (2019-2022). Dissolvable capsules containing polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyethylene (PE), and polystyrene (PS), in different size fractions from 50 to 1000 µm, were produced for one ILC study, obtaining relative standard deviation (RSD) from 0 to 24%. The larger size fraction allowed for manual addition of particles to the capsules, yielding 0% error and 100% recovery during QA/QC. Dissolvable capsules were replaced by soda tablets in subsequent ILC studies and recovery test exercises because they were found to be a more reliable carrier for microplastic RMs. Batches of soda tablets were produced containing different single and multiple polymer mixtures, i.e., PE, PET, PS, PVC, polypropylene (PP), and polycarbonate (PC), with RSD ranging from 8 to 21%. Lastly, soda tablets consisting of a mixture of PE, PVC, and PS (125-355 µm) were produced and used for recovery testing during pretreatment of environmental samples. These had an RSD of 9%. Results showed that soda tablets and capsules containing microplastics >50 µm could be produced with sufficient precision for internal recovery tests and external ILC studies. Further work is required to optimize this method for smaller microplastics (< 50 µm) because variation was found to be too large during QA/QC. Nevertheless, this approach represents a valuable solution addressing many of the challenges associated with validating microplastic analytical methods.

3.
Water Res ; 232: 119707, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36773351

RESUMO

Microplastics (MPs) are one of the most widespread contaminants worldwide, yet their risks for freshwater ecosystems have seldom been investigated. In this study, we performed a large monitoring campaign to assess the presence and risks of MPs in Amazonian freshwater ecosystems. We investigated MP pollution in 40 samples collected along 1500 km in the Brazilian Amazon, including the Amazon River, three major tributaries, and several streams next to the most important urban areas. MPs in the 55-5000 µm size range were characterized (size, shape, color) by microscopy and identified (polymer composition) by infrared spectroscopy. Ecotoxicological risks were assessed using chronic Species Sensitivity Distributions for effects triggered by food dilution and tissue translocation using data alignment methods that correct for polydispersity of environmental MPs and bioaccessibility. This study shows that MPs are ubiquitous contaminants in Amazonian freshwater ecosystems, with measured concentrations (55-5000 µm) ranging between 5 and 152 MPs/m3 in the Amazon River and its main tributaries, and between 23 and 74,550 MPs/m3 in urban streams. The calculated Hazardous Concentration for the 5% of species (HC5) derived from the SSDs for the entire MP range (1-5000 µm) were 1.6 × 107 MPs/m3 (95% CI: 1.2 × 106 - 4.0 × 108) for food dilution, and 1.8 × 107 MPs/m3 (95% CI: 1.5 × 106 - 4.3 × 108) for translocation. Rescaled exposure concentrations (1-5000 µm) in the Amazon River and tributaries ranged between 6.0 × 103 and 1.8 × 105 MPs/m3, and were significantly lower than the calculated HC5 values. Rescaled concentrations in urban streams ranged between 1.7 × 105 and 5.7 × 108 MPs/m3, and exceeded both calculated HC5 values in 20% of the locations. This study shows that ecological impacts by MP contamination are not likely to happen in the Amazon River and its major tributaries. However, risks for freshwater organisms may be expected in near densely populated areas, such as the cities of Manaus or Belem, which have limited wastewater treatment facilities.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Rios/química , Ecossistema , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Medição de Risco
4.
Microplast nanoplast ; 2(1): 26, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532855

RESUMO

Microplastic is now ubiquitous in freshwater, sediment and biota, globally. This is as a consequence of inputs from, for example, waste mismanagement, effluents from wastewater treatment plants and surface runoff from agricultural areas. In this study, we investigated point source pollution of plastic to an upland stream, originating from a recycling plant that recycles polyethylene film in a remote area of Norway. Sediment (~2 kg) and macroinvertebrates (549 individuals in total) were sampled at one site upstream and two sites downstream of the recycling plant to study microplastic deposition and food web uptake. In total, 340 microplastic films were identified through a combination of visual and µFTIR analysis in the sediment samples. This corresponded to a concentration of 0.23 (± 0.057) items per g sediment upstream of the plastic recycling plant and 0.45 (± 0.017) and 0.58 (± 0.34) items per g downstream. The dominant plastic polymer was polyethylene, which increased significantly downstream of the plastic recycling plant. This indicates the role of the plastic recycling plant as a point source for microplastic in this catchment. Among the three sites investigated, a fairly constant concentration of polypropylene was found, indicating a diffuse source of polypropylene films across the catchment possibly relating to low-intensity agricultural land-use. Low levels of polyethylene were also observed upstream, which may be linked to either local or longer-distance atmospheric transport. Despite the considerable presence of microplastic in sediments, concentrations in macroinvertebrates were extremely low with only a single microplastic particle identified in the total of 549 macroinvertebrates-belonging to three different feeding groups-investigated. Our study suggests that: 1) microplastic pollution can be transferred to remote areas as unintended losses from recycling facilities, 2) remote areas with limited land-use pressure still have detectable levels of microplastic and 3) microplastic is only taken up by stream macroinvertebrates to a limited degree despite relatively high sediment concentrations, and thus there are no strong indications for ecological risks posed by microplastic to this ecological group at this location. Supplementary Information: The online version contains supplementary material available at 10.1186/s43591-022-00045-z.

5.
Sci Total Environ ; 792: 148308, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34153762

RESUMO

The Arctic ecosystem receives contaminants transported through complex environmental pathways - such as atmospheric, riverine and oceanographic transport, as well as local infrastructure. A holistic approach is required to assess the impact that plastic pollution may have on the Arctic, especially with regard to the unseen microplastics. This study presents data on microplastics in the Arctic fjords of western Svalbard, by addressing the ecological consequences of their presence in coastal surface waters and sediment, and through non-invasive approaches by sampling faeces from an apex predator, the benthic feeder walrus (Odobenus rosmarus). Sample locations were chosen to represent coastal areas with different degrees of anthropogenic pollution and geographical features (e.g., varying glacial coverage of catchment area, winter ice cover, traffic, visitors), while also relevant feeding grounds for walrus. Microplastics in surface water and sediments ranged between

Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos , Espectroscopia de Infravermelho com Transformada de Fourier , Morsas , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA