RESUMO
INTRODUCTION: Vascular contributions to cognitive impairment and dementia (VCID) represent a major factor in cognitive decline in older adults. The present study examined the relationship between cerebrovascular reactivity (CVR) measured by magnetic resonance imaging (MRI) and cognitive function in a multi-site study, using a predefined hypothesis. METHODS: We conducted the study in a total of three analysis sites and 263 subjects. Each site performed an identical CVR MRI procedure using 5% carbon dioxide inhalation. A global cognitive measure of Montreal Cognitive Assessment (MoCA) and an executive function measure of item response theory (IRT) score were used as outcomes. RESULTS: CVR and MoCA were positively associated, and this relationship was reproduced at all analysis sites. CVR was found to be positively associated with executive function. DISCUSSION: The predefined hypothesis on the association between CVR and a global cognitive score was validated in three independent analysis sites, providing support for CVR as a biomarker in VCID. HIGHLIGHTS: This study measured a novel functional index of small arteries referred to as cerebrovascular reactivity (CVR). CVR was positively associated with global cognition in older adults. This finding was observed in three independent cohorts at three sites. Our statistical analysis plan was predefined before beginning data collection.
Assuntos
Biomarcadores , Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Idoso , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Circulação Cerebrovascular/fisiologia , Função Executiva/fisiologia , Testes de Estado Mental e Demência/estatística & dados numéricos , Testes Neuropsicológicos/estatística & dados numéricosRESUMO
INTRODUCTION: High-performing biomarkers measuring the vascular contributions to cognitive impairment and dementia are lacking. METHODS: Using a multi-site observational cohort study design, we examined the diagnostic accuracy of plasma placental growth factor (PlGF) within the MarkVCID Consortium (n = 335; CDR 0-1). Subjects underwent clinical evaluation, cognitive testing, MRI, and blood sampling as defined by Consortium protocols. RESULTS: In the prospective population of 335 subjects (72.2 ± 7.8 years of age, 49.3% female), plasma PlGF (pg/mL) shows an ordinal odds ratio (OR) of 1.16 (1.07-1.25; P = .0003) for increasing Fazekas score and ordinal OR of 1.22 (1.14-1.32; P < .0001) for functional cognitive impairment measured by the Clinical Dementia Rating scale. We achieved the primary study outcome of a site-independent association of plasma PlGF (pg/mL) with white matter injury and cognitive impairment in two of three study cohorts. Secondary outcomes using the full MarkVCID cohort demonstrated that plasma PlGF can significantly discriminate individuals with Fazekas ≥ 2 and CDR = 0.5 (area under the curve [AUC] = 0.74) and CDR = 1 (AUC = 0.89) from individuals with CDR = 0. DISCUSSION: Plasma PlGF measured by standardized immunoassay functions as a stable, reliable, diagnostic biomarker for cognitive impairment associated with substantial white matter burden.
Assuntos
Disfunção Cognitiva , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores , Disfunção Cognitiva/diagnóstico , Fator de Crescimento Placentário , Estudos Prospectivos , Idoso , Idoso de 80 Anos ou maisRESUMO
Cerebrovascular reactivity (CVR), which measures the ability of cerebral blood vessels to dilate or constrict in response to vasoactive stimuli such as CO2 inhalation, is an important index of the brain's vascular health. Quantification of CVR using BOLD MRI with hypercapnia challenge has shown great promises in research and clinical studies. However, in order for it to be used as a potential imaging biomarker in large-scale and multi-site studies, the reliability of CO2-CVR quantification across different MRI acquisition platforms and researchers/raters must be examined. The goal of this report from the MarkVCID small vessel disease biomarkers consortium is to evaluate the reliability of CO2-CVR quantification in three studies. First, the inter-rater reliability of CO2-CVR data processing was evaluated by having raters from 5 MarkVCID sites process the same 30 CVR datasets using a cloud-based CVR data processing pipeline. Second, the inter-scanner reproducibility of CO2-CVR quantification was assessed in 10 young subjects across two scanners of different vendors. Third, test-retest repeatability was evaluated in 20 elderly subjects from 4 sites with a scan interval of less than 2 weeks. In all studies, the CO2 CVR measurements were performed using the fixed inspiration method, where the subjects wore a nose clip and a mouthpiece and breathed room air and 5% CO2 air contained in a Douglas bag alternatively through their mouth. The results showed that the inter-rater CoV of CVR processing was 0.08 ± 0.08% for whole-brain CVR values and ranged from 0.16% to 0.88% in major brain regions, with ICC of absolute agreement above 0.9959 for all brain regions. Inter-scanner CoV was found to be 6.90 ± 5.08% for whole-brain CVR values, and ranged from 4.69% to 12.71% in major brain regions, which are comparable to intra-session CoVs obtained from the same scanners on the same day. ICC of consistency between the two scanners was 0.8498 for whole-brain CVR and ranged from 0.8052 to 0.9185 across major brain regions. In the test-retest evaluation, test-retest CoV across different days was found to be 18.29 ± 17.12% for whole-brain CVR values, and ranged from 16.58% to 19.52% in major brain regions, with ICC of absolute agreement ranged from 0.6480 to 0.7785. These results demonstrated good inter-rater, inter-scanner, and test-retest reliability in healthy volunteers, and suggested that CO2-CVR has suitable instrumental properties for use as an imaging biomarker of cerebrovascular function in multi-site and longitudinal observational studies and clinical trials.
Assuntos
Circulação Cerebrovascular , Hipercapnia/diagnóstico por imagem , Administração por Inalação , Idoso , Envelhecimento , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Dióxido de Carbono/farmacologia , Feminino , Voluntários Saudáveis , Humanos , Hipercapnia/metabolismo , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Adulto JovemRESUMO
The MarkVCID consortium was formed under cooperative agreements with the National Institute of Neurologic Diseases and Stroke (NINDS) and National Institute on Aging (NIA) in 2016 with the goals of developing and validating biomarkers for the cerebral small vessel diseases associated with the vascular contributions to cognitive impairment and dementia (VCID). Rigorously validated biomarkers have consistently been identified as crucial for multicenter studies to identify effective strategies to prevent and treat VCID, specifically to detect increased VCID risk, diagnose the presence of small vessel disease and its subtypes, assess prognosis for disease progression or response to treatment, demonstrate target engagement or mechanism of action for candidate interventions, and monitor disease progression during treatment. The seven project sites and central coordinating center comprising MarkVCID, working with NINDS and NIA, identified a panel of 11 candidate fluid- and neuroimaging-based biomarker kits and established harmonized multicenter study protocols (see companion paper "MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols" for full details). Here we describe the MarkVCID neuroimaging protocols with specific focus on validating their application to future multicenter trials. MarkVCID procedures for participant enrollment; clinical and cognitive evaluation; and collection, handling, and instrumental validation of fluid samples are described in detail in a companion paper. Magnetic resonance imaging (MRI) has long served as the neuroimaging modality of choice for cerebral small vessel disease and VCID because of its sensitivity to a wide range of brain properties, including small structural lesions, connectivity, and cerebrovascular physiology. Despite MRI's widespread use in the VCID field, there have been relatively scant data validating the repeatability and reproducibility of MRI-based biomarkers across raters, scanner types, and time intervals (collectively defined as instrumental validity). The MRI protocols described here address the core MRI sequences for assessing cerebral small vessel disease in future research studies, specific sequence parameters for use across various research scanner types, and rigorous procedures for determining instrumental validity. Another candidate neuroimaging modality considered by MarkVCID is optical coherence tomography angiography (OCTA), a non-invasive technique for directly visualizing retinal capillaries as a marker of the cerebral capillaries. OCTA has theoretical promise as a unique opportunity to visualize small vessels derived from the cerebral circulation, but at a considerably earlier stage of development than MRI. The additional OCTA protocols described here address procedures for determining OCTA instrumental validity, evaluating sources of variability such as pupil dilation, and handling data to maintain participant privacy. MRI protocol and instrumental validation The core sequences selected for the MarkVCID MRI protocol are three-dimensional T1-weighted multi-echo magnetization-prepared rapid-acquisition-of-gradient-echo (ME-MPRAGE), three-dimensional T2-weighted fast spin echo fluid-attenuated-inversion-recovery (FLAIR), two-dimensional diffusion-weighted spin-echo echo-planar imaging (DWI), three-dimensional T2*-weighted multi-echo gradient echo (3D-GRE), three-dimensional T2 -weighted fast spin-echo imaging (T2w), and two-dimensional T2*-weighted gradient echo echo-planar blood-oxygenation-level-dependent imaging with brief periods of CO2 inhalation (BOLD-CVR). Harmonized parameters for each of these core sequences were developed for four 3 Tesla MRI scanner models in widespread use at academic medical centers. MarkVCID project sites are trained and certified for their instantiation of the consortium MRI protocols. Sites are required to perform image quality checks every 2 months using the Alzheimer's Disease Neuroimaging Initiative phantom. Instrumental validation for MarkVCID MRI-based biomarkers is operationally defined as inter-rater reliability, test-retest repeatability, and inter-scanner reproducibility. Assessments of these instrumental properties are performed on individuals representing a range of cerebral small vessel disease from mild to severe. Inter-rater reliability is determined by distribution of an independent dataset of MRI scans to each analysis site. Test-retest repeatability is determined by repeat MRI scans performed on individual participants on a single MRI scanner after a short (1- to 14-day) interval. Inter-scanner reproducibility is determined by repeat MRI scans performed on individuals performed across four MRI scanner models. OCTA protocol and instrumental validation The MarkVCID OCTA protocol uses a commercially available, Food and Drug Administration-approved OCTA apparatus. Imaging is performed on one dilated and one undilated eye to assess the need for dilation. Scans are performed in quadruplicate. MarkVCID project sites participating in OCTA validation are trained and certified by this biomarker's lead investigator. Inter-rater reliability for OCTA is assessed by distribution of OCTA datasets to each analysis site. Test-retest repeatability is assessed by repeat OCTA imaging on individuals on the same day as their baseline OCTA and a different-day repeat session after a short (1- to 14-day) interval. Methods were developed to allow the OCTA data to be de-identified by the sites before transmission to the central data management system. The MarkVCID neuroimaging protocols, like the other MarkVCID procedures, are designed to allow translation to multicenter trials and as a template for outside groups to generate directly comparable neuroimaging data. The MarkVCID neuroimaging protocols are available to the biomedical community and intended to be shared. In addition to the instrumental validation procedures described here, each of the neuroimaging MarkVCID kits will undergo biological validation to determine its ability to measure important aspects of VCID such as cognitive function. The analytic methods for the neuroimaging-based kits and the results of these validation studies will be published separately. The results will ultimately determine the neuroimaging kits' potential usefulness for multicenter interventional trials in small vessel disease-related VCID.
Assuntos
Biomarcadores , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Neuroimagem/normas , Idoso , Angiografia , Encéfalo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tomografia de Coerência ÓpticaRESUMO
The concept of vascular contributions to cognitive impairment and dementia (VCID) derives from more than two decades of research indicating that (1) most older individuals with cognitive impairment have post mortem evidence of multiple contributing pathologies and (2) along with the preeminent role of Alzheimer's disease (AD) pathology, cerebrovascular disease accounts for a substantial proportion of this contribution. Contributing cerebrovascular processes include both overt strokes caused by etiologies such as large vessel occlusion, cardioembolism, and embolic infarcts of unknown source, and frequently asymptomatic brain injuries caused by diseases of the small cerebral vessels. Cerebral small vessel diseases such as arteriolosclerosis and cerebral amyloid angiopathy, when present at moderate or greater pathologic severity, are independently associated with worse cognitive performance and greater likelihood of dementia, particularly in combination with AD and other neurodegenerative pathologies. Based on this evidence, the US National Alzheimer's Project Act explicitly authorized accelerated research in vascular and mixed dementia along with frontotemporal and Lewy body dementia and AD itself. Biomarker development has been consistently identified as a key step toward translating scientific advances in VCID into effective prevention and treatment strategies. Validated biomarkers can serve a range of purposes in trials of candidate interventions, including (1) identifying individuals at increased VCID risk, (2) diagnosing the presence of cerebral small vessel disease or specific small vessel pathologies, (3) stratifying study participants according to their prognosis for VCID progression or treatment response, (4) demonstrating an intervention's target engagement or pharmacodynamic mechanism of action, and (5) monitoring disease progression during treatment. Effective biomarkers allow academic and industry investigators to advance promising interventions at early stages of development and discard interventions with low success likelihood. The MarkVCID consortium was formed in 2016 with the goal of developing and validating fluid- and imaging-based biomarkers for the cerebral small vessel diseases associated with VCID. MarkVCID consists of seven project sites and a central coordinating center, working with the National Institute of Neurologic Diseases and Stroke and National Institute on Aging under cooperative agreements. Through an internal selection process, MarkVCID has identified a panel of 11 candidate biomarker "kits" (consisting of the biomarker measure and the clinical and cognitive data used to validate it) and established a range of harmonized procedures and protocols for participant enrollment, clinical and cognitive evaluation, collection and handling of fluid samples, acquisition of neuroimaging studies, and biomarker validation. The overarching goal of these protocols is to generate rigorous validating data that could be used by investigators throughout the research community in selecting and applying biomarkers to multi-site VCID trials. Key features of MarkVCID participant enrollment, clinical/cognitive testing, and fluid biomarker procedures are summarized here, with full details in the following text, tables, and supplemental material, and a description of the MarkVCID imaging biomarker procedures in a companion paper, "MarkVCID Cerebral small vessel consortium: II. Neuroimaging protocols." The procedures described here address a range of challenges in MarkVCID's design, notably: (1) acquiring all data under informed consent and enrollment procedures that allow unlimited sharing and open-ended analyses without compromising participant privacy rights; (2) acquiring the data in a sufficiently wide range of study participants to allow assessment of candidate biomarkers across the various patient groups who might ultimately be targeted in VCID clinical trials; (3) defining a common dataset of clinical and cognitive elements that contains all the key outcome markers and covariates for VCID studies and is realistically obtainable during a practical study visit; (4) instituting best fluid-handling practices for minimizing avoidable sources of variability; and (5) establishing rigorous procedures for testing the reliability of candidate fluid-based biomarkers across replicates, assay runs, sites, and time intervals (collectively defined as the biomarker's instrumental validity). Participant Enrollment Project sites enroll diverse study cohorts using site-specific inclusion and exclusion criteria so as to provide generalizable validation data across a range of cognitive statuses, risk factor profiles, small vessel disease severities, and racial/ethnic characteristics representative of the diverse patient groups that might be enrolled in a future VCID trial. MarkVCID project sites include both prospectively enrolling centers and centers providing extant data and samples from preexisting community- and population-based studies. With approval of local institutional review boards, all sites incorporate MarkVCID consensus language into their study documents and informed consent agreements. The consensus language asks prospectively enrolled participants to consent to unrestricted access to their data and samples for research analysis within and outside MarkVCID. The data are transferred and stored as a de-identified dataset as defined by the Health Insurance Portability and Accountability Act Privacy Rule. Similar human subject protection and informed consent language serve as the basis for MarkVCID Research Agreements that act as contracts and data/biospecimen sharing agreements across the consortium. Clinical and Cognitive Data Clinical and cognitive data are collected across prospectively enrolling project sites using common MarkVCID instruments. The clinical data elements are modified from study protocols already in use such as the Alzheimer's Disease Center program Uniform Data Set Version 3 (UDS3), with additional focus on VCID-related items such as prior stroke and cardiovascular disease, vascular risk factors, focal neurologic findings, and blood testing for vascular risk markers and kidney function including hemoglobin A1c, cholesterol subtypes, triglycerides, and creatinine. Cognitive assessments and rating instruments include the Clinical Dementia Rating Scale, Geriatric Depression Scale, and most of the UDS3 neuropsychological battery. The cognitive testing requires ≈60 to 90 minutes. Study staff at the prospectively recruiting sites undergo formalized training in all measures and review of their first three UDS3 administrations by the coordinating center. Collection and Handling of Fluid Samples Fluid sample types collected for MarkVCID biomarker kits are serum, ethylenediaminetetraacetic acid-plasma, platelet-poor plasma, and cerebrospinal fluid (CSF) with additional collection of packed cells to allow future DNA extraction and analyses. MarkVCID fluid guidelines to minimize variability include fasting morning fluid collections, rapid processing, standardized handling and storage, and avoidance of CSF contact with polystyrene. Instrumental Validation for Fluid-Based Biomarkers Instrumental validation of MarkVCID fluid-based biomarkers is operationally defined as determination of intra-plate and inter-plate repeatability, inter-site reproducibility, and test-retest repeatability. MarkVCID study participants both with and without advanced small vessel disease are selected for these determinations to assess instrumental validity across the full biomarker assay range. Intra- and inter-plate repeatability is determined by repeat assays of single split fluid samples performed at individual sites. Inter-site reproducibility is determined by assays of split samples distributed to multiple sites. Test-retest repeatability is determined by assay of three samples acquired from the same individual, collected at least 5 days apart over a 30-day period and assayed on a single plate. The MarkVCID protocols are designed to allow direct translation of the biomarker validation results to multicenter trials. They also provide a template for outside groups to perform analyses using identical methods and therefore allow direct comparison of results across studies and centers. All MarkVCID protocols are available to the biomedical community and intended to be shared. In addition to the instrumental validation procedures described here, each of the MarkVCID kits will undergo biological validation to determine whether the candidate biomarker measures important aspects of VCID such as cognitive function. Analytic methods and results of these validation studies for the 11 MarkVCID biomarker kits will be published separately. The results of this rigorous validation process will ultimately determine each kit's potential usefulness for multicenter interventional trials aimed at preventing or treating small vessel disease related VCID.
Assuntos
Biomarcadores , Doenças de Pequenos Vasos Cerebrais/diagnóstico , Disfunção Cognitiva/diagnóstico , Seleção de Pacientes , Projetos de Pesquisa , Idoso , Demência/etiologia , Progressão da Doença , Feminino , Humanos , Disseminação de Informação , Masculino , Testes Neuropsicológicos , Acidente Vascular Cerebral/etiologiaRESUMO
The diffusion tensor image analysis along the perivascular space (DTI-ALPS) method was proposed to evaluate glymphatic system (GS) function. However, few studies have validated its reliability and reproducibility. Fifty participants' DTI data from the MarkVCID consortium were included in this study. Two pipelines by using DSI studio and FSL software were developed for data processing and ALPS index calculation. The ALPS index was obtained by the average of bilateral ALPS index and was used for testing the cross-vendor, inter-rater and test-retest reliability by using R studio software. The ALPS index demonstrated favorable inter-scanner reproducibility (ICC=0.77 to 0.95, P < 0.001), inter-rater reliability (ICC=0.96 to 1, P< 0.001) and test-retest repeatability (ICC=0.89 to 0.95, P< 0.001), offering a potential biomarker for in vivo evaluation of GS function.
RESUMO
BACKGROUND: White matter hyperintensities (WMH) that occur in the setting of vascular cognitive impairment and dementia (VCID) may be dynamic increasing or decreasing volumes or stable over time. Quantifying such changes may prove useful as a biomarker for clinical trials designed to address vascular cognitive-impairment and dementia and Alzheimer's Disease. OBJECTIVE: Conducting multi-site cross-site inter-rater and test-retest reliability of the MarkVCID white matter hyperintensity growth and regression protocol. METHODS: The NINDS-supported MarkVCID Consortium evaluated a neuroimaging biomarker developed to track WMH change. Test-retest and cross-site inter-rater reliability of the protocol were assessed. Cognitive test scores were analyzed in relation to WMH changes to explore its construct validity. RESULTS: ICC values for test-retest reliability of WMH growth and regression were 0.969 and 0.937 respectively, while for cross-site inter-rater ICC values for WMH growth and regression were 0.995 and 0.990 respectively. Word list long-delay free-recall was negatively associated with WMH growth (p < 0.028) but was not associated with WMH regression. CONCLUSIONS: The present data demonstrate robust ICC validity of a WMH growth/regression protocol over a one-year period as measured by cross-site inter-rater and test-retest reliability. These data suggest that this approach may serve an important role in clinical trials of disease-modifying agents for VCID that may preferentially affect WMH growth, stability, or regression.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência Vascular , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , BiomarcadoresRESUMO
Current medications have not been effective in reducing the prevalence of mental illness worldwide. The prevalence of illnesses such as treatment-resistant depression has increased despite the widespread use of a broad set of psychopharmaceuticals. Transcranial magnetic stimulation and ketamine therapy are making great strides in improving treatment-resistant depression outcomes but they have limitations. New psychotherapeutics are required that specifically target the underlying cellular pathologies leading to neuronal atrophy. This neuronal atrophy model is supplanting the long-held neurotransmitter deficit hypothesis to explain mental illness. Interest in psychedelics as therapeutic molecules to treat mental illness is experiencing a 21st-century reawakening that is on the cusp of a transformation. Psilocybin is a pro-drug, found in various naturally occurring mushrooms, that is dephosphorylated to produce psilocin, a classic tryptamine psychedelic functional as a 5-hydroxytryptamine 2A receptor agonist. We have focused this review to include studies in the last two years that suggest psilocybin promotes neuronal plasticity, which may lead to changes in brain network connectivity. Recent advancements in clinical trials using pure psilocybin in therapy suggest that it may effectively relieve the symptoms of depression in patients diagnosed with major depressive disorder and treatment-resistant depression. Sophisticated cellular and molecular experiments at the systems level have produced evidence that demonstrates psilocybin promotes neuritogenesis in the mouse brain - a mechanism that may address the root cause of depression at the cellular level. Finally, studies with psilocybin therapy for major depressive disorder suggest that this ancient molecule can promote functionally connected intrinsic networks in the human brain, resulting in durable improvements in the severity of depressive symptoms. Although further research is necessary, the prospect of using psilocybin for the treatment of mental illness is an enticing possibility.
RESUMO
Introduction: To evaluate the clinical validity of free water (FW), a diffusion tensor imaging-based biomarker kit proposed by the MarkVCID consortium, by investigating the association between mean FW (mFW) and executive function. Methods: Baseline mFW was related to a baseline composite measure of executive function (EFC), adjusting for relevant covariates, in three MarkVCID sub-cohorts, and replicated in five, large, independent legacy cohorts. In addition, we tested whether baseline mFW predicted accelerated EFC score decline (mean follow-up time: 1.29 years). Results: Higher mFW was found to be associated with lower EFC scores in MarkVCID legacy and sub-cohorts (p-values < 0.05). In addition, higher baseline mFW was associated significantly with accelerated decline in EFC scores (p = 0.0026). Discussion: mFW is a sensitive biomarker of cognitive decline, providing a strong clinical rational for its use as a marker of white matter (WM) injury in multi-site observational studies and clinical trials of vascular cognitive impairment and dementia (VCID).
RESUMO
Introduction: To describe the protocol and findings of the instrumental validation of three imaging-based biomarker kits selected by the MarkVCID consortium: free water (FW) and peak width of skeletonized mean diffusivity (PSMD), both derived from diffusion tensor imaging (DTI), and white matter hyperintensity (WMH) volume derived from fluid attenuation inversion recovery and T1-weighted imaging. Methods: The instrumental validation of imaging-based biomarker kits included inter-rater reliability among participating sites, test-retest repeatability, and inter-scanner reproducibility across three types of magnetic resonance imaging (MRI) scanners using intra-class correlation coefficients (ICC). Results: The three biomarkers demonstrated excellent inter-rater reliability (ICC >0.94, P-values < .001), very high agreement between test and retest sessions (ICC >0.98, P-values < .001), and were extremely consistent across the three scanners (ICC >0.98, P-values < .001). Discussion: The three biomarker kits demonstrated very high inter-rater reliability, test-retest repeatability, and inter-scanner reproducibility, offering robust biomarkers suitable for future multi-site observational studies and clinical trials in the context of vascular cognitive impairment and dementia (VCID).
RESUMO
PURPOSE: Body piercing has become increasingly prevalent. We describe a case of breast infection with combined mycobacteria and anaerobe following nipple piercing, and review the literature. CASE: A 17-year-old female developed a breast abscess 4 months after nipple piercing. Cultures grew Prevotalla melangenica and Mycobacterium fortuitum. She required drainage and antibiotic treatment. Three months into her treatment she stopped her medications, relapsed, and required drainage. Two months later, on antimycobacteria therapy, her wound is healing. DISCUSSION: Review of the infectious complications of nipple piercing yielded 12 cases, 5 of which had a foreign body. The pathogens isolated (coagulase negative staphylococcus, mycobacteria, streptococcus, anaerobe, and gordonia) are not the usual organisms to be isolated from a breast abscess. This could result from reporting bias or the presence of a foreign body, the nipple ring. The three cases of mycobacteria, in addition to ours, are reviewed. The average age is 22 years. Three to 9 months elapsed between piercing and infection. All cases required drainage. Antimycobacteria therapy was used in three of the four cases for 10 days to 6 months. CONCLUSION: With the increasing prevalence of body piercing, it is important to document and report infections. We describe a breast abscess following nipple piercing with combined anaerobic and a mycobacterial pathogens. This underscores the need for obtaining cultures including anaerobes and mycobacteria.