Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Acc Chem Res ; 47(11): 3321-30, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25338296

RESUMO

CONSPECTUS: In chemical and biological systems, various interactions that govern the chemical and physical properties of molecules, assembling phenomena, and electronic transport properties compete and control the microscopic structure of materials. The well-controlled manipulation of each component can allow researchers to design receptors or sensors, new molecular architectures, structures with novel morphology, and functional molecules or devices. In this Account, we describe the structures and electronic and spintronic properties of π-molecular systems that are important for controlling the architecture of a variety of carbon-based systems. Although DFT is an important tool for describing molecular interactions, the inability of DFT to accurately represent dispersion interactions has made it difficult to properly describe π-interactions. However, the recently developed dispersion corrections for DFT have allowed us to include these dispersion interactions cost-effectively. We have investigated noncovalent interactions of various π-systems including aromatic-π, aliphatic-π, and non-π systems based on dispersion-corrected DFT (DFT-D). In addition, we have addressed the validity of DFT-D compared with the complete basis set (CBS) limit values of coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)] and Møller-Plesset second order perturbation theory (MP2). The DFT-D methods are still unable to predict the correct ordering in binding energies within the benzene dimer and the cyclohexane dimer. Nevertheless, the overall DFT-D predicted binding energies are in reasonable agreement with the CCSD(T) results. In most cases, results using the B97-D3 method closely reproduce the CCSD(T) results with the optimized energy-fitting parameters. On the other hand, vdW-DF2 and PBE0-TS methods estimate the dispersion energies from the calculated electron density. In these approximations, the interaction energies around the equilibrium point are reasonably close to the CCSD(T) results but sometimes slightly deviate from them because interaction energies were not particularly optimized with parameters. Nevertheless, because the electron cloud deforms when neighboring atoms/ions induce an electric field, both vdW-DF2 and PBE0-TS seem to properly reproduce the resulting change of dispersion interaction. Thus, improvements are needed in both vdW-DF2 and PBE0-TS to better describe the interaction energies, while the B97-D3 method could benefit from the incorporation of polarization-driven energy changes that show highly anisotropic behavior. Although the current DFT-D methods need further improvement, DFT-D is very useful for computer-aided molecular design. We have used these newly developed DFT-D methods to calculate the interactions between graphene and DNA nucleobases. Using DFT-D, we describe the design of molecular receptors of π-systems, graphene based electronic devices, metalloporphyrin half-metal based spintronic devices as graphene nanoribbon (GNR) analogs, and graphene based molecular electronic devices for DNA sequencing. DFT-D has also helped us understand quantum phenomena in materials and devices of π-systems including graphene.


Assuntos
Teoria Quântica , Modelos Teóricos , Termodinâmica
2.
J Struct Biol ; 174(1): 173-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21094257

RESUMO

Triclosan (5-chloro-2-(2,4-dichloro-phenoxy)-phenol, TCL) is a well known inhibitor against enoyl-acyl carrier protein reductase (ENR), an enzyme critical for cell-wall synthesis of bacteria. The inhibitory concentration at 50% inhibition (IC(50)) of TCL against the Escherichia coli ENR is 150nM for wild type (WT), 380, 470 and 68,500nM for Ala, Ser and Val mutants, respectively. To understand this high TCL resistance in the G93V mutant, we obtained the crystal structures of mutated ENRs complexed with TCL and NAD(+). The X-ray structural analysis along with the ab initio calculations and molecular dynamics simulations explains the serious consequence in the G93V mutant complex. The major interactions around TCL due to the aromatic(cation)-aromatic and hydrogen bonding interactions are found to be conserved both in WT and mutant complexes. Thus, the overall structural change of protein is minimal except that a flexible α-helical turn around TCL is slightly pushed away due to the presence of the bulky valine group. However, TCL shows substantial edge-to-face aromatic (π)-interactions with both the flexible R192-F203 region and the residues in the close vicinity of G93. The weakening of some edge-to-face aromatic interactions around TCL in the G93V mutant results in serious resistance to TCL. This understanding is beneficial to design new generation of antibiotics which will effectively act on the mutant ENRs.


Assuntos
Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Triclosan/farmacologia , Cristalografia por Raios X , Farmacorresistência Bacteriana/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Simulação de Dinâmica Molecular , Mutação , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
3.
Chemistry ; 17(4): 1163-70, 2011 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-21243682

RESUMO

Intermolecular interactions that involve aromatic rings are key processes in both chemical and biological recognition. It is common knowledge that the existence of anion-π interactions between anions and electron-deficient (π-acidic) aromatics indicates that electron-rich (π-basic) aromatics are expected to be repulsive to anions due to their electron-donating character. Here we report the first concrete theoretical and experimental evidence of the anion-π interaction between electron-rich alkylbenzene rings and a fluoride ion in CH(3)CN. The cyclophane cavity bridged with three naphthoimidazolium groups selectively complexes a fluoride ion by means of a combination of anion-π interactions and (C-H)(+)···F(-)-type ionic hydrogen bonds. (1)H NMR, (19)F NMR, and fluorescence spectra of 1 and 2 with fluoride ions are examined to show that only 2 can host a fluoride ion in the cavity between two alkylbenzene rings to form a sandwich complex. In addition, the cage compounds can serve as highly selective and ratiometric fluorescent sensors for a fluoride ion. With the addition of 1 equiv of F(-), a strongly increased fluorescence emission centered at 385 nm appears at the expense of the fluorescence emission of 2 centered at 474 nm. Finally, isothermal titration calorimetry (ITC) experiments were performed to obtain the binding constants of the compounds 1 and 2 with F(-) as well as Gibbs free energy. The 2-F(-) complex is more stable than the 1-F(-) complex by 1.87 kcal mol(-1), which is attributable to the stronger anion-π interaction between F(-) and triethylbenzene.


Assuntos
Ânions/química , Cátions/química , Fluoretos/química , Imidazóis/química , Elétrons , Hidrocarbonetos Aromáticos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Estrutura Molecular
4.
Bioorg Med Chem Lett ; 21(2): 704-6, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21194937

RESUMO

We report the highly improved version of quencher-free molecular beacon (QF-MB) system by using graphene oxide (GO) as an external quencher. This QF-MB/GO system provided a higher S/B ratio (31.0) relative to that (2.2) of the same system in the absence of GO, while retaining a high selectivity for fully matched over single-base-mismatched targets.


Assuntos
Corantes Fluorescentes/química , Grafite/química , Sondas de Oligonucleotídeos/química , Óxidos/química , Modelos Moleculares , Oligodesoxirribonucleotídeos/química , Espectrometria de Fluorescência
5.
Phys Chem Chem Phys ; 13(3): 991-1001, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21063580

RESUMO

We have carried out extensive calculations for neutral, cationic protonated, anionic deprotonated phenol dimers. The structures and energetics of this system are determined by the delicate competition between H-bonding, H-π interaction and π-π interaction. Thus, the structures, binding energies and frequencies of the dimers are studied by using a variety of functionals of density functional theory (DFT) and Møller-Plesset second order perturbation theory (MP2) with medium and extended basis sets. The binding energies are compared with those of highly reliable coupled cluster theory with single, double, and perturbative triple excitations (CCSD(T)) at the complete basis set (CBS) limit. The neutral phenol dimer is unique in the sense that its experimental rotational constants have been measured. The geometry of the neutral phenol dimer is governed by the hydrogen bond formed by two hydroxyl groups and the H-π interaction between two aromatic rings, while the structure of the protonated/deprotonated phenol dimers is additionally governed by the electrostatic and induction effects due to the short strong hydrogen bond (SSHB) and the charges populated in the aromatic rings in the ionic systems. Our salient finding is the substantial differences in structure between neutral, protonated, and deprotonated phenol dimers. This is because the neutral dimer involves in both H(π)···O and H(π)···π interactions, the protonated dimer involves in H(π)···π interactions, and the deprotonated dimer involves in a strong H(π)···O interaction. It is important to compare the reliability of diverse computational approaches employed in quantum chemistry on the basis of the calculational results of this system. MP2 calculations using a small cc-pVDZ basis set give reasonable structures, but those using extended basis sets predict wrong π-stacked structures due to the overestimation of the dispersion energies of the π-π interactions. A few new DFT functionals with the empirical dispersion give reliable results consistent with the CCSD(T)/CBS results. The binding energies of the neutral, cationic protonated, and anionic deprotonated phenol dimers are estimated to be more than 28.5, 118.2, and 118.3 kJ mol(-1), respectively. The energy components of the intermolecular interactions for the neutral, protonated and deprotonated dimers are analyzed.


Assuntos
Fenol/química , Dimerização , Ligação de Hidrogênio , Modelos Químicos , Prótons , Teoria Quântica , Termodinâmica
6.
J Phys Chem A ; 115(19): 4882-93, 2011 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-21517065

RESUMO

Described in this work is the kinetics of oxidation of ascorbic acid and hydroquinone by a tetranuclear Mn(IV) oxidant, [Mn(4)(µ-O)(6)(bipy)(6)](4+) (1(4+), bipy =2,2(/)-bipyridine), in aqueous solution over a wide pH range 1.5-6.0. In particular, below pH 3.0, protonation on the oxo-bridge of 1(4+) results in the formation of [Mn(4)(µ-O)(5)(µ-OH)(bipy)(6)](5+) (1H(5+)) as an additional oxidant over 1(4+). Both ascorbic acid and ascorbate whereas only hydroquinone and none of its protolytic species were found to be reactive reducing agents in these reactions. Analysis of the rate data clearly established that the oxo-bridge protonated oxidant 1H(5+) is kinetically far more superior to 1(4+) in oxidizing ascorbic acid and hydroquinone. Rates of these reactions are substantially lowered in D(2)O-enriched media in comparison to that in H(2)O media. An initial one electron one proton transfer electroprotic rate step could be mechanistically conceived. DFT studies established that among the two sets of terminal and central Mn(IV) atoms in the tetranuclear oxidant, one of the two terminal Mn(IV) is reduced to Mn(III) at the rate step that we can intuitively predict considering the probable positive charge distribution on the Mn(IV) atoms.


Assuntos
Ácido Ascórbico/química , Hidroquinonas/química , Manganês/química , Compostos Organometálicos/química , Estrutura Molecular , Oxirredução , Teoria Quântica , Água/química
7.
Chemistry ; 16(40): 12141-6, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-20839182

RESUMO

Given that half-metals are promising futuristic materials for spintronics, organic materials showing half-metal character are highly desirable for spintronic devices, not only owing to their weak spin-orbit and hyperfine interactions, but also their light and flexible properties. We predict that a two-dimensional organic 2,4,6-tri-(1,3,5-triazinyl)methyl radical polymer has half-metallic properties as well as a spontaneous magnetic ordering at ambient temperature. The quantum transmission is studied based on the nonequilibrium Green function theory coupled with density functional theory. The half-metallic property in the triazine-based polymer depends mainly on the nature of the p-band in contrast to of conventional half metals in which the nature of the d-band is more important.

8.
Chemistry ; 16(34): 10373-9, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20652911

RESUMO

Protonated and deprotonated adipic acids (PAA: HOOC-(CH(2))(4)--COOH(2) (+) and DAA: HOOC-(CH(2))(4)-COO(-)) have a charged hydrogen bond under the influence of steric constraint due to the molecular skeleton of a circular ring. Despite the similarity between PAA and DAA, it is surprising that the lowest energy structure of PAA is predicted to have (H(2)O...H...OH(2))(+) Zundel-like symmetric hydrogen bonding, whereas that of DAA has H(3)O(+) Eigen-like asymmetric hydrogen bonding. The energy profiles show that direct proton transfer between mirror image structures is unfavorable. Instead, the chiral transformation is possible by subsequent backbone twistings through stepwise proton transfer along multistep intermediate structures, which are Zundel-like ions for PAA and Eigen-like ions for DAA. This type of chiral transformation by multistep intramolecular proton transfers is unprecedented. Several prominent OH...O short hydrogen-bond stretching peaks are predicted in the range of 1000-1700 cm(-1) in the Car-Parrinello molecular dynamics (CPMD) simulations, which show distinctive signatures different from ordinary hydrogen-bond peaks. The O-H-O stretching peaks in the range of 1800-2700 cm(-1) become insignificant above around 150 K and are almost washed out at about 300 K.

9.
Phys Chem Chem Phys ; 12(27): 7648-53, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20523949

RESUMO

Aromatic pi-pi interaction in the presence of a metal atom has been investigated experimentally and theoretically with the model system of bis(eta(6)-benzene)chromium-benzene cluster (Cr(Bz)(2)-Bz) in which a free solvating benzene is non-covalently attached to the benzene moiety of Cr(Bz)(2). One-photon mass-analyzed threshold ionization (MATI) spectroscopy and first principles calculations are employed to identify the structure of Cr(Bz)(2)-Bz which adopts the parallel-displaced configuration. The decrease in ionization potential for Cr(Bz)(2)-Bz compared with Cr(Bz)(2), resulting from the increase of the cation-pi stabilization energy upon ionization, is consistent with the parallel-displaced structure of the cluster. Theoretical calculations give the detailed cluster structures with associated energetics, thus revealing the nature of pi-pi-metal or pi-pi-cation interactions at the molecular level.


Assuntos
Benzeno/química , Cromo/química , Metais/química , Compostos Organometálicos/química , Algoritmos , Cátions/química , Modelos Químicos , Solventes/química , Análise Espectral
10.
J Am Chem Soc ; 131(42): 15528-33, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19919166

RESUMO

A pincer-like benzene-bridged sensor 1 with a pyrene excimer as a signal source and imidazolium as a phosphate anion receptor was synthesized and investigated for ATP sensing. A unique switch of excimer vs monomer pyrene fluorescence of 1 is observed in the presence of ATP due to the charcteristic sandwich pi-pi stacking of pyrene-adenine-pyrene. On the other hand, four other bases of nucleoside triphosphates such as GTP, CTP, UTP, and TTP can interact only from the outside with the already stabilized stacked pyrene-pyrene dimer of 1, resulting in excimer fluorescence quenching. The fluorescent intensity ratio of monomer-to-excimer for 1 upon binding with ATP (I(375)/I(487)) is much larger than that upon binding with ADP and AMP. This difference is large enough to discriminate ATP from ADP and AMP. As one of the biological applications, sensor 1 is successfully applied to the ATP staining experiments. Sensor 1 is also applied to monitor the hydrolysis of ATP and ADP by apyrase. The results indicate that 1 is a useful fluorescent sensor for investigations of ATP-relevant biological processes.


Assuntos
Adenina/química , Trifosfato de Adenosina/análise , Corantes Fluorescentes/análise , Pirenos/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular
11.
Chemistry ; 15(41): 10843-50, 2009 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-19760729

RESUMO

The development of visible-light-active photocatalysts is being investigated through various approaches. In this study, C(60)-based sensitized photocatalysis that works through the charge transfer (CT) mechanism is proposed and tested as a new approach. By employing the water-soluble fullerol (C(60)(OH)(x)) instead of C(60), we demonstrate that the adsorbed fullerol activates TiO(2) under visible-light irradiation through the "surface-complex CT" mechanism, which is largely absent in the C(60)/TiO(2) system. Although fullerene and its derivatives have often been utilized in TiO(2)-based photochemical conversion systems as an electron transfer relay, their successful photocatalytic application as a visible-light sensitizer of TiO(2) is not well established. Fullerol/TiO(2) exhibits marked visible photocatalytic activity not only for the redox conversion of 4-chlorophenol, I(-), and Cr(VI), but also for H(2) production. The photoelectrode of fullerol/TiO(2) also generates an enhanced anodic photocurrent under visible light as compared with the electrodes of bare TiO(2) and C(60)/TiO(2), which confirms that the visible-light-induced electron transfer from fullerol to TiO(2) is particularly enhanced. The surface complexation of fullerol/TiO(2) induced a visible absorption band around 400-500 nm, which was extinguished when the adsorption of fullerol was inhibited by fluorination of the surface of TiO(2). The transient absorption spectroscopic measurement gave an absorption spectrum ascribed to fullerol radical cations (fullerol(*+)) the generation of which should be accompanied by the proposed CT. The theoretical calculation regarding the absorption spectra for the (TiO(2) cluster+fullerol) model also confirmed the proposed CT, which involves excitation from HOMO (fullerol) to LUMO (TiO(2) cluster) as the origin of the visible-light absorption.

12.
Chemistry ; 15(22): 5598-604, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19370741

RESUMO

Alkali-metal amidoboranes have been recently highlighted as materials that satisfy many of the criteria required to make hydrogen-storage media. It is, therefore, crucial for us to understand the dehydrogenation mechanism of these materials for further development towards making successful hydrogen-storage media. In the present study, we attempt to shed light on the mechanisms involved in the loss of one molar equivalent of H(2) from solid lithium amidoboranes by using high-level ab initio calculations of monomeric and dimeric compounds in the gas phase. In the lithium amidoborane dimer, H(2) is released by the formation of LiH, which is followed by a redox reaction of the dihydrogen bond formed between the strongly basic H(-) in LiH and H(delta+) bonded to N. In the dehydrogenation process, the Li cation catalyzes the intermolecular N-B bond formation; this could lead to new pathways for N-B polymerization. After the release of the first molecule of H(2), a Li cation binds to a nitrogen atom, resulting in a lowering of the energy barrier for the second dehydrogenation process per dimer. These results will be useful for the design of future hydrogen-storage media.

13.
J Phys Chem A ; 112(29): 6527-32, 2008 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-18578481

RESUMO

To understand the autoionization of pure water and the solvation of ammonia in water, we investigated the undissociated and dissociated (ion-pair) structures of (H2O) n and NH3(H2O)n-1 (n = 5, 8, 9, 21) using density functional theory (DFT) and second order Moller-Plesset perturbation theory (MP2). The stability, thermodynamic properties, and infrared spectra were also studied. The dissociated (ion-pair) form of the clusters tends to favor the solvent-separated ion-pair of H3O+/NH4+ and OH-. As for the NH3(H2O)20 cluster, the undissociated structure has the internal conformation, in contrast to the surface conformation for the (H2O)21 cluster, whereas the dissociated structure of NH3(H2O)20 has the surface conformation. As the cluster size of (H2O)n/NH3(H2O)n-1 increases, the difference in standard free energy between undissociated and dissociated (ion-pair) clusters is asymptotically well corroborated with the experimental free energy change at infinite dilution of H3O+/NH4+ and OH-. The predicted NH and OH stretching frequencies of the undissociated and dissociated (ion-pair) clusters are discussed.


Assuntos
Amônia/química , Água/química , Teoria Quântica , Espectrofotometria Infravermelho , Termodinâmica
14.
Biol Open ; 7(11)2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30257829

RESUMO

15-deoxy-delta 12,14-prostaglandin J2 (15d-PGJ2) is an anti-inflammatory/anti-neoplastic prostaglandin that functions through covalent binding to cysteine residues of various target proteins. We previously showed that 15d-PGJ2 mediated anti-inflammatory responses are dependent on the translational inhibition through its interaction with eIF4A (Kim et al., 2007). Binding of 15d-PGJ2 to eIF4A specifically blocks the interaction between eIF4G and eIF4A, which leads to the formation of stress granules (SGs), which then cluster mRNAs with inhibited translation. Here, we show that the binding between 15d-PGJ2 and eIF4A specifically blocks the interaction between the MIF4G domain of eIF4G and eIF4A. To reveal the mechanism of this interaction, we used computational simulation-based docking studies and identified that the carboxyl tail of 15d-PGJ2 could stabilize the binding of 15d-PGJ2 to eIF4A through arginine 295 of eIF4A, which is the first suggestion that the 15d-PGJ2 tail plays a physiological role. Interestingly, the putative 15d-PGJ2 binding site on eiF4A is conserved across many species, suggesting a biological role. Our data propose that studying 15d-PGJ2 and its targets may uncover new therapeutic approaches in anti-inflammatory drug discovery.

15.
Org Lett ; 9(3): 485-8, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17249793

RESUMO

[structure: see text] Quinoxaline derivatives (1-4) bearing two imidazolium moieties are found to strongly bind anions and show unique charge-transfer fluorescent responses to pyrophosphate and acetate, whereas they show excimer formation with other anions. Anion-binding studies are investigated with fluorescence and 1H NMR analysis, single-crystal X-ray analysis, and theoretical calculations.


Assuntos
Acetatos/química , Técnicas Biossensoriais/métodos , Difosfatos/química , Corantes Fluorescentes/química , Imidazóis/química , Quinoxalinas/química , Ânions , Sítios de Ligação , Cristalografia por Raios X , Transporte de Elétrons , Fluorescência , Espectroscopia de Ressonância Magnética , Espectrometria de Fluorescência , Raios X
16.
Proteins ; 65(3): 692-701, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16972281

RESUMO

The West Nile virus (WNV) NS3 serine protease, which plays an important role in assembly of infective virion, is an attractive target for anti-WNV drug development. Cofactors NS2B and NS4A increase the catalytic activity of NS3 in dengue virus and Hepatitis C virus, respectively. Recent studies on the WNV-NS3 characterize the catalytically active form of NS3 by tethering the 40-residue cofactor NS2B. It is suggested that NS2B is essential for the NS3 activity in WNV, while there is no information of the WNV-NS3-related crystal structure. To understand the role of NS2B/substrate in the NS3 catalytic activity, we built a series of models: WNV-NS3 and WNV-NS3-NS2B and WNV-NS3-NS2B-substrate using homology modeling and molecular modeling techniques. Molecular dynamics (MD) simulations were performed for 2.75 ns on each model, to investigate the structural stabilization and catalytic triad motion of the WNV NS3 protease with and without NS2B/substrate. The simulations show that the NS3 rearrangement occurs upon the NS2B binding, resulting in the stable D75-OD1...H51-NH hydrogen bonding. After the substrate binds to the NS3-NS2B active site, the NS3 protease becomes more stable, and the catalytic triad is formed. These results provide a structural basis for the activation and stabilization of the enzyme by its cofactor and substrate.


Assuntos
Serina Endopeptidases/química , Proteínas não Estruturais Virais/química , Vírus do Nilo Ocidental/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , RNA Helicases/química , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato , Termodinâmica , Vírus do Nilo Ocidental/química
18.
J Mol Graph Model ; 25(4): 434-41, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16616535

RESUMO

Shigellosis is a major public health problem in many developing countries. Antibiotic therapy can reduce the severity of the dysentery and prevent potentially lethal complication. However, owing to the increased resistance to most of the widely used and inexpensive antibiotics, there is an urgent need for new antibacterial agents, particularly those that act on novel targets. Chorismate synthase (CS) is a key enzyme in the shikimic acid pathway, which is essential for the synthesis of aromatic amino acids in bacteria. As an anti-bacterial drug target, CS has been well validated. A homology model of Shigella-CS with the flavin mononucleotide (FMN) binding was constructed using the crystal structure of CS from other species. The substrate 5-enolpyruvylshikimate 3-phosphate (EPSP) was subsequently docked into the active site based on previous theoretical studies. Molecular dynamics (MD) was used to refine the starting ternary model. The model was well conserved during the 1.8 ns MD simulation with the equilibrium root mean square deviation (RMSD) value of 3.5 angstrom. The substrate binding energy was calculated and the electrostatic energy was found to be the most important term for binding. Decomposition of binding energies revealed that R129, R125, R327, R134 and R48 are important residues involved in substrate binding, which is useful for further site-directed mutagenesis experiments. In the absence of crystal structure, our study provides an early insight into the structure of CS from Shigella flexneri and its binding to the substrate and cofactor, thus facilitating the inhibitor design.


Assuntos
Fósforo-Oxigênio Liases/química , Shigella flexneri/enzimologia , Sequência de Aminoácidos , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Fósforo-Oxigênio Liases/genética , Conformação Proteica , Alinhamento de Sequência , Shigella flexneri/genética , Termodinâmica
19.
Org Lett ; 5(12): 2083-6, 2003 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-12790534

RESUMO

[structure: see text] The fluorescent chemosensor 1 bearing two imidazolium groups at the 1,8-position of anthracene has been designed for the recognition of anions through the (C-H)(+)- - -X(-) hydrogen bond formation. As unique tweezer-like binding of 1 with anions is predicted by the ab initio calculations, strong anion-binding properties of chemosensor 1 are demonstrated by using fluorescence as well as (1)H NMR.

20.
Org Lett ; 16(2): 334-7, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24377324

RESUMO

A series of novel coronands having a 2n-crown-n topology based on trioxane (6-crown-3) derivatives are designed and characterized. These neutral hosts can sense anions through pure aliphatic C-H hydrogen bonding (HB) in condensed phases due to the unusual topology of 2n-crown-n. C-H bonds are strongly polarized by two adjacent oxygen atoms in this scaffold. These hosts provide a rare opportunity to modulate anion binding strength by changing the electronic nature of aliphatic C-H bonds and offer ease of synthesis.


Assuntos
Éteres de Coroa/química , Ânions , Éteres de Coroa/síntese química , Cristalografia por Raios X , Hidrogênio , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA