Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cureus ; 16(4): e58835, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38784357

RESUMO

INTRODUCTION: Brain arteriovenous malformations (bAVMs) are vascular abnormalities that can be treated with embolization or radiotherapy to prevent the risk of future rupture. In this study, we use hand-crafted radiomics and deep learning techniques to predict favorable vs. unfavorable outcomes following Gamma Knife radiosurgery (GKRS) of bAVMs and compare their prediction performances. METHODS: One hundred twenty-six patients seen at one academic medical center for GKRS obliteration of bAVMs over 15 years were retrospectively reviewed. Forty-two patients met the inclusion criteria. Favorable outcomes were defined as complete nidus obliteration demonstrated on cerebral angiogram and asymptomatic recovery. Unfavorable outcomes were defined as incomplete obliteration or complications relating to the AVM that developed after GKRS. Outcome predictions were made using a random forest model with hand-crafted radiomic features and a fine-tuned ResNet-34 convolutional neural network (CNN) model. The performance was evaluated by using a ten-fold cross-validation technique. RESULTS: The average accuracy and area-under-curve (AUC) values of the Random Forest Classifier (RFC) with radiomics features were 68.5 ±9.80% and 0.705 ±0.086, whereas those of the ResNet-34 model were 60.0 ±11.9% and 0.694 ±0.124. Four radiomics features used with RFC discriminated unfavorable response cases from favorable response cases with statistical significance. When cropped images were used with ResNet-34, the accuracy and AUC decreased to 59.3 ± 14.2% and 55.4 ±10.4%, respectively. CONCLUSIONS: A hand-crafted radiomics model and a pre-trained CNN model can be fine-tuned on pre-treatment MRI scans to predict clinical outcomes of AVM patients undergoing GKRS with equivalent prediction performance. The outcome predictions are promising but require further external validation on more patients.

2.
Predict Intell Med ; 13564: 36-48, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36331280

RESUMO

For the first time, we propose using a multiple instance learning based convolution-free transformer model, called Multiple Instance Neuroimage Transformer (MINiT), for the classification of T1-weighted (T1w) MRIs. We first present several variants of transformer models adopted for neuroimages. These models extract non-overlapping 3D blocks from the input volume and perform multi-headed self-attention on a sequence of their linear projections. MINiT, on the other hand, treats each of the non-overlapping 3D blocks of the input MRI as its own instance, splitting it further into non-overlapping 3D patches, on which multi-headed self-attention is computed. As a proof-of-concept, we evaluate the efficacy of our model by training it to identify sex from T1w-MRIs of two public datasets: Adolescent Brain Cognitive Development (ABCD) and the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA). The learned attention maps highlight voxels contributing to identifying sex differences in brain morphometry. The code is available at https://github.com/singlaayush/MINIT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA